Page - 41 - in Differential Geometrical Theory of Statistics
Image of the Page - 41 -
Text of the Page - 41 -
Entropy2016,18, 370
Weobserve that ρb reaches itsmaximal value at the pointm ∈ M such that −→
Om = R −→
b
‖−→b ‖ and its
minimalvalueat thediametrallyopposedpoint.
7.3.2. TheGalileanGroup, ItsLieAlgebraandItsActions
Inviewof thepresentation,madebelow,of somephysicallymeaningfulgeneralizedGibbsstates
forHamiltonianactionsof subgroupsof theGalileangroup,werecall in this sectionsomenotions
about thespace-timeofclassical (non-relativistic)mechanics, theGalileangroup, itsLiealgebraandits
Hamiltonianactions. The interestedreaderwillfindamuchmoredetailed treatmentonthesesubjects
in thebookbySouriau[14]or in therecentbookbydeSaxcéandVallée [45]. Thepaper [62]presentsa
niceapplicationofGalilean invariance in thermodynamics.
The space-time of classicalmechanics is a four-dimensional real affine spacewhich, once an
inertial reference frame,unitsof lengthandtime,orthonormalbasesof spaceandtimearechosen, can
be identifiedwithR4≡R3×R (coordinates x,y, z, t). Thefirst threecoordinates x,yand z canbe
consideredas the threecomponentsofavector−→r ∈R3, thereforeanelementof space-timecanbe
denotedby (−→r ,t).However,as theactionof theGalileangroupwill show, thesplittingofspace-time
intospaceandtime isnotuniquelydetermined, itdependsonthechoiceofan inertial reference frame.
Inclassicalmechanics, thereexistsanabsolute time,butnoabsolutespace. Thereexists insteadaspace
(which isanEuclideanaffinethree-dimensional space) foreachvalueof the time. Thespaces for two
distinctvaluesof the timeshouldbeconsideredasdisjoint.
Thespace-timebeing identifiedwithR3×Rasexplainedabove, theGalileangroupG canbe
identifiedwith thesetofmatricesof the
form⎛⎜⎝A
−→
b −→
d
0 1 e
0 0 1 ⎞⎟⎠ , withA∈SO(3) ,−→b and−→d ∈R3 , e∈R , (8)
the vector spaceR3 being oriented and endowed with its usual Euclidean structure, the matrix
A∈SO(3)actingonit.
The actionof theGalileangroupGon space-time, identifiedas indicatedabovewithR3×R,
is theaffineaction ⎛⎜⎝ −→r
t
1 ⎞⎟⎠ → ⎛⎜⎝A −→
b −→
d
0 1 e
0 0 1 ⎞⎟⎠ ⎛⎜⎝ −→r
t
1 ⎞⎟⎠= ⎛⎜⎝A−→r + t −→
b + −→
d
t+e
1 ⎞⎟⎠ .
TheLiealgebraG of theGalileangroupG canbe identifiedwith thespaceofmatricesof the
form⎛⎜⎝j(−→ω)
−→
β −→
δ
0 0 ε
0 0 0 ⎞⎟⎠ , with−→ω ,−→β and−→δ ∈R3 , ε∈R . (9)
Wehavedenotedby j(−→ω) the3×3skew-symmetricmatrix
j(−→ω)= ⎛⎜⎝ 0 −ωz
ωyωz
0 −ωx
−ωy ωx 0 ⎞⎟⎠ .
Thematrix j(−→ω) isanelement in theLiealgebraso(3), anditsactiononavector−→r ∈R3 isgiven
bythevectorproduct j(−→ω)−→r =−→ω×−→r .
41
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik