Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 41 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 41 - in Differential Geometrical Theory of Statistics

Image of the Page - 41 -

Image of the Page - 41 - in Differential Geometrical Theory of Statistics

Text of the Page - 41 -

Entropy2016,18, 370 Weobserve that ρb reaches itsmaximal value at the pointm ∈ M such that −→ Om = R −→ b ‖−→b ‖ and its minimalvalueat thediametrallyopposedpoint. 7.3.2. TheGalileanGroup, ItsLieAlgebraandItsActions Inviewof thepresentation,madebelow,of somephysicallymeaningfulgeneralizedGibbsstates forHamiltonianactionsof subgroupsof theGalileangroup,werecall in this sectionsomenotions about thespace-timeofclassical (non-relativistic)mechanics, theGalileangroup, itsLiealgebraandits Hamiltonianactions. The interestedreaderwillfindamuchmoredetailed treatmentonthesesubjects in thebookbySouriau[14]or in therecentbookbydeSaxcéandVallée [45]. Thepaper [62]presentsa niceapplicationofGalilean invariance in thermodynamics. The space-time of classicalmechanics is a four-dimensional real affine spacewhich, once an inertial reference frame,unitsof lengthandtime,orthonormalbasesof spaceandtimearechosen, can be identifiedwithR4≡R3×R (coordinates x,y, z, t). Thefirst threecoordinates x,yand z canbe consideredas the threecomponentsofavector−→r ∈R3, thereforeanelementof space-timecanbe denotedby (−→r ,t).However,as theactionof theGalileangroupwill show, thesplittingofspace-time intospaceandtime isnotuniquelydetermined, itdependsonthechoiceofan inertial reference frame. Inclassicalmechanics, thereexistsanabsolute time,butnoabsolutespace. Thereexists insteadaspace (which isanEuclideanaffinethree-dimensional space) foreachvalueof the time. Thespaces for two distinctvaluesof the timeshouldbeconsideredasdisjoint. Thespace-timebeing identifiedwithR3×Rasexplainedabove, theGalileangroupG canbe identifiedwith thesetofmatricesof the form⎛⎜⎝A −→ b −→ d 0 1 e 0 0 1 ⎞⎟⎠ , withA∈SO(3) ,−→b and−→d ∈R3 , e∈R , (8) the vector spaceR3 being oriented and endowed with its usual Euclidean structure, the matrix A∈SO(3)actingonit. The actionof theGalileangroupGon space-time, identifiedas indicatedabovewithR3×R, is theaffineaction ⎛⎜⎝ −→r t 1 ⎞⎟⎠ → ⎛⎜⎝A −→ b −→ d 0 1 e 0 0 1 ⎞⎟⎠ ⎛⎜⎝ −→r t 1 ⎞⎟⎠= ⎛⎜⎝A−→r + t −→ b + −→ d t+e 1 ⎞⎟⎠ . TheLiealgebraG of theGalileangroupG canbe identifiedwith thespaceofmatricesof the form⎛⎜⎝j(−→ω) −→ β −→ δ 0 0 ε 0 0 0 ⎞⎟⎠ , with−→ω ,−→β and−→δ ∈R3 , ε∈R . (9) Wehavedenotedby j(−→ω) the3×3skew-symmetricmatrix j(−→ω)= ⎛⎜⎝ 0 −ωz ωyωz 0 −ωx −ωy ωx 0 ⎞⎟⎠ . Thematrix j(−→ω) isanelement in theLiealgebraso(3), anditsactiononavector−→r ∈R3 isgiven bythevectorproduct j(−→ω)−→r =−→ω×−→r . 41
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics