Seite - 41 - in Differential Geometrical Theory of Statistics
Bild der Seite - 41 -
Text der Seite - 41 -
Entropy2016,18, 370
Weobserve that Ïb reaches itsmaximal value at the pointm â M such that ââ
Om = R ââ
b
âââb â and its
minimalvalueat thediametrallyopposedpoint.
7.3.2. TheGalileanGroup, ItsLieAlgebraandItsActions
Inviewof thepresentation,madebelow,of somephysicallymeaningfulgeneralizedGibbsstates
forHamiltonianactionsof subgroupsof theGalileangroup,werecall in this sectionsomenotions
about thespace-timeofclassical (non-relativistic)mechanics, theGalileangroup, itsLiealgebraandits
Hamiltonianactions. The interestedreaderwillïŹndamuchmoredetailed treatmentonthesesubjects
in thebookbySouriau[14]or in therecentbookbydeSaxcéandVallée [45]. Thepaper [62]presentsa
niceapplicationofGalilean invariance in thermodynamics.
The space-time of classicalmechanics is a four-dimensional real afïŹne spacewhich, once an
inertial reference frame,unitsof lengthandtime,orthonormalbasesof spaceandtimearechosen, can
be identiïŹedwithR4âĄR3ĂR (coordinates x,y, z, t). TheïŹrst threecoordinates x,yand z canbe
consideredas the threecomponentsofavectorââr âR3, thereforeanelementof space-timecanbe
denotedby (ââr ,t).However,as theactionof theGalileangroupwill show, thesplittingofspace-time
intospaceandtime isnotuniquelydetermined, itdependsonthechoiceofan inertial reference frame.
Inclassicalmechanics, thereexistsanabsolute time,butnoabsolutespace. Thereexists insteadaspace
(which isanEuclideanafïŹnethree-dimensional space) foreachvalueof the time. Thespaces for two
distinctvaluesof the timeshouldbeconsideredasdisjoint.
Thespace-timebeing identiïŹedwithR3ĂRasexplainedabove, theGalileangroupG canbe
identiïŹedwith thesetofmatricesof the
formâââA
ââ
b ââ
d
0 1 e
0 0 1 âââ , withAâSO(3) ,ââb andââd âR3 , eâR , (8)
the vector spaceR3 being oriented and endowed with its usual Euclidean structure, the matrix
AâSO(3)actingonit.
The actionof theGalileangroupGon space-time, identiïŹedas indicatedabovewithR3ĂR,
is theafïŹneaction âââ ââr
t
1 âââ â âââA ââ
b ââ
d
0 1 e
0 0 1 âââ âââ ââr
t
1 âââ = âââAââr + t ââ
b + ââ
d
t+e
1 âââ .
TheLiealgebraG of theGalileangroupG canbe identiïŹedwith thespaceofmatricesof the
formâââj(ââÏ)
ââ
ÎČ ââ
ÎŽ
0 0 Δ
0 0 0 âââ , withââÏ ,ââÎČ andââÎŽ âR3 , ΔâR . (9)
Wehavedenotedby j(ââÏ) the3Ă3skew-symmetricmatrix
j(ââÏ)= âââ 0 âÏz
ÏyÏz
0 âÏx
âÏy Ïx 0 âââ .
Thematrix j(ââÏ) isanelement in theLiealgebraso(3), anditsactiononavectorââr âR3 isgiven
bythevectorproduct j(ââÏ)ââr =ââÏĂââr .
41
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik