Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 41 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 41 - in Differential Geometrical Theory of Statistics

Bild der Seite - 41 -

Bild der Seite - 41 - in Differential Geometrical Theory of Statistics

Text der Seite - 41 -

Entropy2016,18, 370 Weobserve that ρb reaches itsmaximal value at the pointm ∈ M such that −→ Om = R −→ b ‖−→b ‖ and its minimalvalueat thediametrallyopposedpoint. 7.3.2. TheGalileanGroup, ItsLieAlgebraandItsActions Inviewof thepresentation,madebelow,of somephysicallymeaningfulgeneralizedGibbsstates forHamiltonianactionsof subgroupsof theGalileangroup,werecall in this sectionsomenotions about thespace-timeofclassical (non-relativistic)mechanics, theGalileangroup, itsLiealgebraandits Hamiltonianactions. The interestedreaderwillïŹndamuchmoredetailed treatmentonthesesubjects in thebookbySouriau[14]or in therecentbookbydeSaxcĂ©andVallĂ©e [45]. Thepaper [62]presentsa niceapplicationofGalilean invariance in thermodynamics. The space-time of classicalmechanics is a four-dimensional real afïŹne spacewhich, once an inertial reference frame,unitsof lengthandtime,orthonormalbasesof spaceandtimearechosen, can be identiïŹedwithR4≡R3×R (coordinates x,y, z, t). TheïŹrst threecoordinates x,yand z canbe consideredas the threecomponentsofavector−→r ∈R3, thereforeanelementof space-timecanbe denotedby (−→r ,t).However,as theactionof theGalileangroupwill show, thesplittingofspace-time intospaceandtime isnotuniquelydetermined, itdependsonthechoiceofan inertial reference frame. Inclassicalmechanics, thereexistsanabsolute time,butnoabsolutespace. Thereexists insteadaspace (which isanEuclideanafïŹnethree-dimensional space) foreachvalueof the time. Thespaces for two distinctvaluesof the timeshouldbeconsideredasdisjoint. Thespace-timebeing identiïŹedwithR3×Rasexplainedabove, theGalileangroupG canbe identiïŹedwith thesetofmatricesof the form⎛⎜⎝A −→ b −→ d 0 1 e 0 0 1 ⎞⎟⎠ , withA∈SO(3) ,−→b and−→d ∈R3 , e∈R , (8) the vector spaceR3 being oriented and endowed with its usual Euclidean structure, the matrix A∈SO(3)actingonit. The actionof theGalileangroupGon space-time, identiïŹedas indicatedabovewithR3×R, is theafïŹneaction ⎛⎜⎝ −→r t 1 ⎞⎟⎠ → ⎛⎜⎝A −→ b −→ d 0 1 e 0 0 1 ⎞⎟⎠ ⎛⎜⎝ −→r t 1 ⎞⎟⎠= ⎛⎜⎝A−→r + t −→ b + −→ d t+e 1 ⎞⎟⎠ . TheLiealgebraG of theGalileangroupG canbe identiïŹedwith thespaceofmatricesof the form⎛⎜⎝j(−→ω) −→ ÎČ âˆ’â†’ ÎŽ 0 0 Δ 0 0 0 ⎞⎟⎠ , with−→ω ,−→ÎČ and−→ή ∈R3 , Δ∈R . (9) Wehavedenotedby j(−→ω) the3×3skew-symmetricmatrix j(−→ω)= ⎛⎜⎝ 0 −ωz ωyωz 0 −ωx −ωy ωx 0 ⎞⎟⎠ . Thematrix j(−→ω) isanelement in theLiealgebraso(3), anditsactiononavector−→r ∈R3 isgiven bythevectorproduct j(−→ω)−→r =âˆ’â†’Ï‰Ă—âˆ’â†’r . 41
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics