Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 44 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 44 - in Differential Geometrical Theory of Statistics

Image of the Page - 44 -

Image of the Page - 44 - in Differential Geometrical Theory of Statistics

Text of the Page - 44 -

Entropy2016,18, 370 wherewehaveusedthewellknownpropertyof themixedproduct −→ω ·(−→ri0×−→vi0)=−→vi0 ·(−→ω×−→ri0) . Letusset −→ U∗= 1 ε (−→ω×−→ri0+ −→ δ ) . Using−→vi0−−→U∗ and−→U∗ insteadof−→vi0,wecanwrite 〈 Ji( −→ri ,t,−→vi ,mi),b 〉 =miε ( −1 2 ‖−→vi0−−→U∗‖2−−→ri0 · −→ β ε + 1 2 ‖−→U∗‖2 ) . Weobserve that thevector −→ U∗onlydependson ε,−→ω ,−→δ ,whichareconstantsonce theelement b∈G is chosen,andof−→ri0,noton−→vi0. Ithasaclearphysicalmeaning: it is thevalueof thevelocityof themovingaffinereference framewithrespect to thefixedaffinereference frame,atpoint−→ri0 seenby anobserver linkedto themovingreference frame. Therefore thevector−→wi0=−→vi0−−→U∗ is the relative velocityof the i-thparticlewithrespect to themovingaffinereferenceframe,seenbyanobserver linked to themovingreference frame. The threecomponentsof−→ri0 andthe threecomponentsof−→pi0=mi−→wi0makeasystemofDarboux coordinatesonthesix-dimensional symplecticmanilold (Mi,ωi)ofmotionsof the i-thparticle.Witha slightabuseofnotations,wecanconsider themomentummap Ji asdefinedonthespaceofmotionsof the i-thparticle, insteadofbeingdefinedontheevolutionspaceof thisparticle, andwrite 〈 Ji( −→ri0,−→pi,0),b 〉 =−ε ( 1 2mi ‖−→pi0‖2+mifi(−→ri0) ) ,−→pi0=mi−→wi0=mi(−→vi0−−→U∗) , (10) and fi( −→ri0)=−→ri0 · −→ β ε − 1 2ε2 ‖−→ω×−→ri0‖2− −→ δ ε · (−→ω ε ×−→ri0 ) − 1 2ε2 ‖−→δ ‖2 . Equation(10) iswell suitedfor thedeterminationofgeneralizedGibbsstatesof thesystem.Let usset Pi(b)= ∫ Mi exp (−〈Ji,b〉)dλωi , EJi(b)= 1Pi(b) ∫ Mi Jiexp (−〈Ji,b〉)dλωi . The integrals in therighthandsidesof theseequalitiesconverge ifandonly if ε<0. Itmeans that thematrixbbelongstothesubsetΩoftheone-dimensionalLiealgebraoftheconsideredone-parameter subgroupG1oftheGalileangrouponwhichgeneralizedGibbsstatescanbedefinedifandonlyifε<0. Assumingthatconditionsatisfied,wecanuseDefinitions19. ThegeneralizedGibbsstatedetermined bybhasthesmoothdensity,withrespect totheLiouvillemeasure∏Ni=1λωi onthesymplecticmanifold ofmotionsΠNi=1(Mi,ωi), ρ(b)= N ∏ i=1 ρi(b) , withρi(b)= 1 Pi(b) exp (−〈Ji,b〉) . Thepartitionfunction,whoseexpression is P(b)= N ∏ i=1 Pi(b) , can be used,with the help of the formulae given in Section 7.2, to determine all the generalized thermodynamic functionsof thegas inageneralizedthermodynamicequilibriumstate. 44
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics