Page - 44 - in Differential Geometrical Theory of Statistics
Image of the Page - 44 -
Text of the Page - 44 -
Entropy2016,18, 370
wherewehaveusedthewellknownpropertyof themixedproduct
−→ω ·(−→ri0×−→vi0)=−→vi0 ·(−→ω×−→ri0) .
Letusset −→
U∗= 1
ε (−→ω×−→ri0+ −→
δ ) .
Using−→vi0−−→U∗ and−→U∗ insteadof−→vi0,wecanwrite
〈
Ji( −→ri ,t,−→vi ,mi),b 〉
=miε (
−1
2 ‖−→vi0−−→U∗‖2−−→ri0 · −→
β
ε + 1
2 ‖−→U∗‖2 )
.
Weobserve that thevector −→
U∗onlydependson ε,−→ω ,−→δ ,whichareconstantsonce theelement
b∈G is chosen,andof−→ri0,noton−→vi0. Ithasaclearphysicalmeaning: it is thevalueof thevelocityof
themovingaffinereference framewithrespect to thefixedaffinereference frame,atpoint−→ri0 seenby
anobserver linkedto themovingreference frame. Therefore thevector−→wi0=−→vi0−−→U∗ is the relative
velocityof the i-thparticlewithrespect to themovingaffinereferenceframe,seenbyanobserver linked
to themovingreference frame.
The threecomponentsof−→ri0 andthe threecomponentsof−→pi0=mi−→wi0makeasystemofDarboux
coordinatesonthesix-dimensional symplecticmanilold (Mi,ωi)ofmotionsof the i-thparticle.Witha
slightabuseofnotations,wecanconsider themomentummap Ji asdefinedonthespaceofmotionsof
the i-thparticle, insteadofbeingdefinedontheevolutionspaceof thisparticle, andwrite
〈
Ji( −→ri0,−→pi,0),b 〉 =−ε (
1
2mi ‖−→pi0‖2+mifi(−→ri0) ) ,−→pi0=mi−→wi0=mi(−→vi0−−→U∗) , (10)
and
fi( −→ri0)=−→ri0 · −→
β
ε − 1
2ε2 ‖−→ω×−→ri0‖2− −→
δ
ε · (−→ω
ε ×−→ri0 )
− 1
2ε2 ‖−→δ ‖2 .
Equation(10) iswell suitedfor thedeterminationofgeneralizedGibbsstatesof thesystem.Let
usset
Pi(b)= ∫
Mi exp (−〈Ji,b〉)dλωi , EJi(b)= 1Pi(b) ∫
Mi Jiexp (−〈Ji,b〉)dλωi .
The integrals in therighthandsidesof theseequalitiesconverge ifandonly if ε<0. Itmeans that
thematrixbbelongstothesubsetΩoftheone-dimensionalLiealgebraoftheconsideredone-parameter
subgroupG1oftheGalileangrouponwhichgeneralizedGibbsstatescanbedefinedifandonlyifε<0.
Assumingthatconditionsatisfied,wecanuseDefinitions19. ThegeneralizedGibbsstatedetermined
bybhasthesmoothdensity,withrespect totheLiouvillemeasure∏Ni=1λωi onthesymplecticmanifold
ofmotionsΠNi=1(Mi,ωi),
ρ(b)= N
∏
i=1 ρi(b) , withρi(b)= 1
Pi(b) exp (−〈Ji,b〉) .
Thepartitionfunction,whoseexpression is
P(b)= N
∏
i=1 Pi(b) ,
can be used,with the help of the formulae given in Section 7.2, to determine all the generalized
thermodynamic functionsof thegas inageneralizedthermodynamicequilibriumstate.
44
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik