Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 44 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 44 - in Differential Geometrical Theory of Statistics

Bild der Seite - 44 -

Bild der Seite - 44 - in Differential Geometrical Theory of Statistics

Text der Seite - 44 -

Entropy2016,18, 370 wherewehaveusedthewellknownpropertyof themixedproduct −→ω ·(−→ri0×−→vi0)=−→vi0 ·(âˆ’â†’Ï‰Ă—âˆ’â†’ri0) . Letusset −→ U∗= 1 Δ (âˆ’â†’Ï‰Ă—âˆ’â†’ri0+ −→ ÎŽ ) . Using−→vi0−−→U∗ and−→U∗ insteadof−→vi0,wecanwrite 〈 Ji( −→ri ,t,−→vi ,mi),b âŒȘ =miΔ ( −1 2 ‖−→vi0−−→U∗‖2−−→ri0 · −→ ÎČ Î” + 1 2 ‖−→U∗‖2 ) . Weobserve that thevector −→ U∗onlydependson Δ,−→ω ,−→ή ,whichareconstantsonce theelement b∈G is chosen,andof−→ri0,noton−→vi0. Ithasaclearphysicalmeaning: it is thevalueof thevelocityof themovingafïŹnereference framewithrespect to theïŹxedafïŹnereference frame,atpoint−→ri0 seenby anobserver linkedto themovingreference frame. Therefore thevector−→wi0=−→vi0−−→U∗ is the relative velocityof the i-thparticlewithrespect to themovingafïŹnereferenceframe,seenbyanobserver linked to themovingreference frame. The threecomponentsof−→ri0 andthe threecomponentsof−→pi0=mi−→wi0makeasystemofDarboux coordinatesonthesix-dimensional symplecticmanilold (Mi,ωi)ofmotionsof the i-thparticle.Witha slightabuseofnotations,wecanconsider themomentummap Ji asdeïŹnedonthespaceofmotionsof the i-thparticle, insteadofbeingdeïŹnedontheevolutionspaceof thisparticle, andwrite 〈 Ji( −→ri0,−→pi,0),b âŒȘ =−Δ ( 1 2mi ‖−→pi0‖2+mifi(−→ri0) ) ,−→pi0=mi−→wi0=mi(−→vi0−−→U∗) , (10) and fi( −→ri0)=−→ri0 · −→ ÎČ Î” − 1 2Δ2 â€–âˆ’â†’Ï‰Ă—âˆ’â†’ri0‖2− −→ ÎŽ Δ · (−→ω Δ ×−→ri0 ) − 1 2Δ2 ‖−→ή ‖2 . Equation(10) iswell suitedfor thedeterminationofgeneralizedGibbsstatesof thesystem.Let usset Pi(b)= ∫ Mi exp (−〈Ji,b〉)dλωi , EJi(b)= 1Pi(b) ∫ Mi Jiexp (−〈Ji,b〉)dλωi . The integrals in therighthandsidesof theseequalitiesconverge ifandonly if Δ<0. Itmeans that thematrixbbelongstothesubsetΩoftheone-dimensionalLiealgebraoftheconsideredone-parameter subgroupG1oftheGalileangrouponwhichgeneralizedGibbsstatescanbedeïŹnedifandonlyifΔ<0. AssumingthatconditionsatisïŹed,wecanuseDeïŹnitions19. ThegeneralizedGibbsstatedetermined bybhasthesmoothdensity,withrespect totheLiouvillemeasure∏Ni=1λωi onthesymplecticmanifold ofmotionsΠNi=1(Mi,ωi), ρ(b)= N ∏ i=1 ρi(b) , withρi(b)= 1 Pi(b) exp (−〈Ji,b〉) . Thepartitionfunction,whoseexpression is P(b)= N ∏ i=1 Pi(b) , can be used,with the help of the formulae given in Section 7.2, to determine all the generalized thermodynamic functionsof thegas inageneralizedthermodynamicequilibriumstate. 44
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics