Seite - 44 - in Differential Geometrical Theory of Statistics
Bild der Seite - 44 -
Text der Seite - 44 -
Entropy2016,18, 370
wherewehaveusedthewellknownpropertyof themixedproduct
ââÏ Â·(ââri0Ăââvi0)=ââvi0 ·(ââÏĂââri0) .
Letusset ââ
Uâ= 1
Δ (ââÏĂââri0+ ââ
ÎŽ ) .
Usingââvi0âââUâ andââUâ insteadofââvi0,wecanwrite
â©
Ji( ââri ,t,ââvi ,mi),b âȘ
=miΔ (
â1
2 âââvi0âââUââ2âââri0 · ââ
ÎČ
Δ + 1
2 âââUââ2 )
.
Weobserve that thevector ââ
Uâonlydependson Δ,ââÏ ,ââÎŽ ,whichareconstantsonce theelement
bâG is chosen,andofââri0,notonââvi0. Ithasaclearphysicalmeaning: it is thevalueof thevelocityof
themovingafïŹnereference framewithrespect to theïŹxedafïŹnereference frame,atpointââri0 seenby
anobserver linkedto themovingreference frame. Therefore thevectorââwi0=ââvi0âââUâ is the relative
velocityof the i-thparticlewithrespect to themovingafïŹnereferenceframe,seenbyanobserver linked
to themovingreference frame.
The threecomponentsofââri0 andthe threecomponentsofââpi0=miââwi0makeasystemofDarboux
coordinatesonthesix-dimensional symplecticmanilold (Mi,Ïi)ofmotionsof the i-thparticle.Witha
slightabuseofnotations,wecanconsider themomentummap Ji asdeïŹnedonthespaceofmotionsof
the i-thparticle, insteadofbeingdeïŹnedontheevolutionspaceof thisparticle, andwrite
â©
Ji( ââri0,ââpi,0),b âȘ =âΔ (
1
2mi âââpi0â2+mifi(ââri0) ) ,ââpi0=miââwi0=mi(ââvi0âââUâ) , (10)
and
fi( ââri0)=ââri0 · ââ
ÎČ
Δ â 1
2Δ2 âââÏĂââri0â2â ââ
ÎŽ
Δ · (ââÏ
Δ Ăââri0 )
â 1
2Δ2 âââÎŽ â2 .
Equation(10) iswell suitedfor thedeterminationofgeneralizedGibbsstatesof thesystem.Let
usset
Pi(b)= â«
Mi exp (âăJi,bă)dλÏi , EJi(b)= 1Pi(b) â«
Mi Jiexp (âăJi,bă)dλÏi .
The integrals in therighthandsidesof theseequalitiesconverge ifandonly if Δ<0. Itmeans that
thematrixbbelongstothesubsetΩoftheone-dimensionalLiealgebraoftheconsideredone-parameter
subgroupG1oftheGalileangrouponwhichgeneralizedGibbsstatescanbedeïŹnedifandonlyifΔ<0.
AssumingthatconditionsatisïŹed,wecanuseDeïŹnitions19. ThegeneralizedGibbsstatedetermined
bybhasthesmoothdensity,withrespect totheLiouvillemeasureâNi=1λÏi onthesymplecticmanifold
ofmotionsÎ Ni=1(Mi,Ïi),
Ï(b)= N
â
i=1 Ïi(b) , withÏi(b)= 1
Pi(b) exp (âăJi,bă) .
Thepartitionfunction,whoseexpression is
P(b)= N
â
i=1 Pi(b) ,
can be used,with the help of the formulae given in Section 7.2, to determine all the generalized
thermodynamic functionsof thegas inageneralizedthermodynamicequilibriumstate.
44
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik