Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 46 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 46 - in Differential Geometrical Theory of Statistics

Image of the Page - 46 -

Image of the Page - 46 - in Differential Geometrical Theory of Statistics

Text of the Page - 46 -

Entropy2016,18, 370 This formuladescribes thebehaviour of a gasmadeofpoint particles of variousmasses in a centrifugerotatingataconstantangularvelocity ω ε : theheavierparticlesconcentrate farther from therotationaxis thanthe lighterones. 7.3.6.OtherApplicationsofGeneralizedGibbsStates ApplicationsofgeneralizedGibbsstates in thermodynamicsofcontinua,with theuseofaffine tensors,arepresented in thepapersbydeSaxcé [64,65]. Several applications of generalized Gibbs states of subgroups of the Poincaré group were consideredbySouriau. Forexample,hepresents inhisbook[14],Chapter IV,p. 308,ageneralized Gibbswhichdescribes thebehaviourofagas inarelativistic centrifuge,andinhispapers [15,16],very niceapplicationsofsuchgeneralizedGibbsstates inCosmology. Acknowledgments: I addressmy thanks toAlainChenciner for his interest andhis help to study theworks ofClaudeShannon, toRogerBalian forhis commentsandhis explanationsabout thermodynamicpotentials, andtoFrédéricBarbarescoforhiskindinvitationtoparticipate intheGSI2015conferenceandhisencouragements. Mywarmest thanks to theanonymousrefereeswhoseverycarefulandbenevolent readingofmyworkallowed metocorrect severalmistakesandto improvethispaper. Conflictsof Interest:Theauthordeclaresnoconflictof interest. References 1. Abraham,R.;Marsden, J.E.FoundationsofMechanics, 2nded.;AmericanChemicalSociety:Washington,DC, USA,1978. 2. Arnold,V.I.MathematicalMethods ofClassicalMechanics, 2nded.; Springer: Berlin/Heidelberg,Germany, 1978. 3. CannasdaSilva,A.LecturesonSymplecticGeometry; Springer: Berlin/Heidelberg,Germany,2001. 4. Guillemin, V.; Sternberg, S. Symplectic Techniques in Physics; Cambridge University Press: Cambridge, UK,1984. 5. Holm,D.GeometricMechanics,Part I:DynamicsansSymmetry;WorldScientific: Singapore,2008. 6. Holm,D.GeometricMechanics,Part II:Rotating,TranslatingandRolling;WorldScientific: Singapore,2008. 7. Iglesias,P.Symétries etMoment;ÉditionsHermann: Paris,France,2000. (InFrench) 8. Laurent-Gengoux, C.; Pichereau, A.; Vanhaecke, P. Poisson Structures; Springer: Berlin/Heidelberg, Germany,2013. 9. Libermann, P.;Marle, C.-M.SymplecticGeometry andAnalyticalMechanics; Springer: Berlin/Heidelberg, Germany,1987. 10. Ortega, J.-P.;Ratiu,T.-S.MomentumMapsandHamiltonianReduction;Birkhäuser: Boston,MA,USA;Basel, Switzerland;Berlin,Germany,2004. 11. Vaisman, I.Lectureson theGeometryofPoissonManifolds; Springer: Berlin/Heidelberg,Germany,1994. 12. Marle,C.-M.Symmetriesofhamiltoniansystemsonsymplecticandpoissonmanifolds. InSimilarityand SymmetryMethods,Applications inElasticityandMechanicsofMaterials;Ganghoffer, J.-F.,Mladenov, I.,Eds.; Springer: Berlin/Heidelberg,Germany,2014;pp.183–269. 13. Souriau, J.-M.Définitioncovariantedeséquilibres thermodynamiques.SupplementoalNuovoCimento1966,4, 203–216. (InFrench) 14. Souriau, J.-M.StructuredesSystèmesDynamiques;Dunod:Malakoff,France,1969. (InFrench) 15. Souriau, J.-M.MécaniqueStatistique,GroupesdeLieetCosmologie. InGéométrieSymplectiqueetPhysique Mathématique;CNRSÉditions: Paris,France,1974;pp.59–113. (InFrench) 16. Souriau, J.-M.Géométrie symplectiqueetPhysiquemathématique. InDeuxConférencesde Jean-Marie Souriau,ColloquiumdelaSociétéMathématiquedeFrance,Paris,France,19February–12November1975. (InFrench) 17. Souriau, J.-M.MécaniqueClassique etGéométrieSymplectique;Dunod:Malakoff,France,1984. (InFrench) 18. Mackey,G.W.TheMathematical Foundations ofQuantumMechanics;W.A.Benjamin, Inc.: NewYork,NY, USA,1963. 46
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics