Seite - 46 - in Differential Geometrical Theory of Statistics
Bild der Seite - 46 -
Text der Seite - 46 -
Entropy2016,18, 370
This formuladescribes thebehaviour of a gasmadeofpoint particles of variousmasses in a
centrifugerotatingataconstantangularvelocity ω
ε : theheavierparticlesconcentrate farther from
therotationaxis thanthe lighterones.
7.3.6.OtherApplicationsofGeneralizedGibbsStates
ApplicationsofgeneralizedGibbsstates in thermodynamicsofcontinua,with theuseofaffine
tensors,arepresented in thepapersbydeSaxcé [64,65].
Several applications of generalized Gibbs states of subgroups of the Poincaré group were
consideredbySouriau. Forexample,hepresents inhisbook[14],Chapter IV,p. 308,ageneralized
Gibbswhichdescribes thebehaviourofagas inarelativistic centrifuge,andinhispapers [15,16],very
niceapplicationsofsuchgeneralizedGibbsstates inCosmology.
Acknowledgments: I addressmy thanks toAlainChenciner for his interest andhis help to study theworks
ofClaudeShannon, toRogerBalian forhis commentsandhis explanationsabout thermodynamicpotentials,
andtoFrédéricBarbarescoforhiskindinvitationtoparticipate intheGSI2015conferenceandhisencouragements.
Mywarmest thanks to theanonymousrefereeswhoseverycarefulandbenevolent readingofmyworkallowed
metocorrect severalmistakesandto improvethispaper.
Conflictsof Interest:Theauthordeclaresnoconflictof interest.
References
1. Abraham,R.;Marsden, J.E.FoundationsofMechanics, 2nded.;AmericanChemicalSociety:Washington,DC,
USA,1978.
2. Arnold,V.I.MathematicalMethods ofClassicalMechanics, 2nded.; Springer: Berlin/Heidelberg,Germany,
1978.
3. CannasdaSilva,A.LecturesonSymplecticGeometry; Springer: Berlin/Heidelberg,Germany,2001.
4. Guillemin, V.; Sternberg, S. Symplectic Techniques in Physics; Cambridge University Press: Cambridge,
UK,1984.
5. Holm,D.GeometricMechanics,Part I:DynamicsansSymmetry;WorldScientific: Singapore,2008.
6. Holm,D.GeometricMechanics,Part II:Rotating,TranslatingandRolling;WorldScientific: Singapore,2008.
7. Iglesias,P.Symétries etMoment;ÉditionsHermann: Paris,France,2000. (InFrench)
8. Laurent-Gengoux, C.; Pichereau, A.; Vanhaecke, P. Poisson Structures; Springer: Berlin/Heidelberg,
Germany,2013.
9. Libermann, P.;Marle, C.-M.SymplecticGeometry andAnalyticalMechanics; Springer: Berlin/Heidelberg,
Germany,1987.
10. Ortega, J.-P.;Ratiu,T.-S.MomentumMapsandHamiltonianReduction;Birkhäuser: Boston,MA,USA;Basel,
Switzerland;Berlin,Germany,2004.
11. Vaisman, I.Lectureson theGeometryofPoissonManifolds; Springer: Berlin/Heidelberg,Germany,1994.
12. Marle,C.-M.Symmetriesofhamiltoniansystemsonsymplecticandpoissonmanifolds. InSimilarityand
SymmetryMethods,Applications inElasticityandMechanicsofMaterials;Ganghoffer, J.-F.,Mladenov, I.,Eds.;
Springer: Berlin/Heidelberg,Germany,2014;pp.183–269.
13. Souriau, J.-M.Définitioncovariantedeséquilibres thermodynamiques.SupplementoalNuovoCimento1966,4,
203–216. (InFrench)
14. Souriau, J.-M.StructuredesSystèmesDynamiques;Dunod:Malakoff,France,1969. (InFrench)
15. Souriau, J.-M.MécaniqueStatistique,GroupesdeLieetCosmologie. InGéométrieSymplectiqueetPhysique
Mathématique;CNRSÉditions: Paris,France,1974;pp.59–113. (InFrench)
16. Souriau, J.-M.Géométrie symplectiqueetPhysiquemathématique. InDeuxConférencesde Jean-Marie
Souriau,ColloquiumdelaSociétéMathématiquedeFrance,Paris,France,19February–12November1975.
(InFrench)
17. Souriau, J.-M.MécaniqueClassique etGéométrieSymplectique;Dunod:Malakoff,France,1984. (InFrench)
18. Mackey,G.W.TheMathematical Foundations ofQuantumMechanics;W.A.Benjamin, Inc.: NewYork,NY,
USA,1963.
46
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik