Page - 49 - in Differential Geometrical Theory of Statistics
Image of the Page - 49 -
Text of the Page - 49 -
entropy
Article
GeometricTheoryofHeat fromSouriauLieGroups
ThermodynamicsandKoszulHessianGeometry:
Applications inInformationGeometryfor
ExponentialFamilies
FrédéricBarbaresco
AdvancedRadarConceptsBusinessUnit,ThalesAirSystems,Limours91470,France;
frederic.barbaresco@thalesgroup.com
AcademicEditor:AdomGifïŹn
Received: 4August2016;Accepted: 27September2016;Published: 4November2016
Abstract: Weintroduce the symplectic structureof informationgeometrybasedonSouriauâsLie
group thermodynamicsmodel,with a covariant deïŹnition ofGibbs equilibriumvia invariances
throughco-adjointactionofagrouponitsmomentspace,deïŹningphysicalobservables likeenergy,
heat, andmoment as pure geometrical objects. Using geometric Planck temperature of Souriau
model and symplectic cocycle notion, theFishermetric is identiïŹedas a Souriaugeometric heat
capacity. TheSouriaumodel isbasedonafïŹnerepresentationofLiegroupandLiealgebra thatwe
comparewithKoszulworksonG/Khomogeneousspaceandbijectivecorrespondencebetweenthe
setofG-invariantïŹatconnectionsonG/KandthesetofafïŹnerepresentationsof theLiealgebraof
G. In theframeworkofLiegroupthermodynamics,anEuler-Poincaréequation iselaboratedwith
respect to thermodynamicvariables, andanewvariationalprincipal for thermodynamics isbuilt
throughaninvariantPoincaré-Cartan-Souriau integral. TheSouriau-Fishermetric is linkedtoKKS
(KostantâKirillovâSouriau) 2-formthat associates a canonicalhomogeneous symplecticmanifold
to the co-adjoint orbits. Weapply thismodel in the frameworkof informationgeometry for the
actionof anafïŹnegroup for exponential families, andprovide some illustrationsofuse cases for
multivariategaussiandensities. Informationgeometryispresentedinthecontextof theseminalwork
ofFréchetandhisClairaut-Legendreequation. TheSouriaumodelof statisticalphysics isvalidated
as compatiblewith theBaliangaugemodelof thermodynamics. Werecall theprecursorworkof
CasalisonafïŹnegroupinvariance fornaturalexponential families.
Keywords:Liegroupthermodynamics;momentmap;Gibbsdensity;Gibbsequilibrium;maximum
entropy; informationgeometry; symplecticgeometry;Cartan-Poincaré integral invariant;geometric
mechanics;Euler-PoincarĂ©equation;Fishermetric;gaugetheory;afïŹnegroup
Lorsque le faitquâonrencontreestenoppositionavecune thĂ©orie rĂ©gnante, il fautaccepter
le fait et abandonner la thĂ©orie, alorsmĂȘmequecelle-ci, soutenuepardegrandsnoms,
estgénéralementadoptée
âClaudeBernard inâIntroductionĂ lâĂtudede laMĂ©decineExpĂ©rimentaleâ [1]
Au dĂ©part, la thĂ©orie de la stabilitĂ© structurelle mâavait paru dâune telle ampleur
et dâune telle gĂ©nĂ©ralitĂ©, quâavec elle je pouvais espĂ©rer en quelque sorte remplacer
la thermodynamiquepar lagéométrie,géométriserenuncertainsens lathermodynamique,
éliminer des considérations thermodynamiques tous les aspects à caractÚremesurable
et stochastiques pour ne conserver que la caractérisation géométrique correspondante
desattracteurs.
âRenĂ©ThominâLogoset thĂ©oriedesCatastrophesâ [2]
Entropy2016,18, 386 49 www.mdpi.com/journal/entropy
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik