Seite - 49 - in Differential Geometrical Theory of Statistics
Bild der Seite - 49 -
Text der Seite - 49 -
entropy
Article
GeometricTheoryofHeat fromSouriauLieGroups
ThermodynamicsandKoszulHessianGeometry:
Applications inInformationGeometryfor
ExponentialFamilies
FrédéricBarbaresco
AdvancedRadarConceptsBusinessUnit,ThalesAirSystems,Limours91470,France;
frederic.barbaresco@thalesgroup.com
AcademicEditor:AdomGiffin
Received: 4August2016;Accepted: 27September2016;Published: 4November2016
Abstract: Weintroduce the symplectic structureof informationgeometrybasedonSouriau’sLie
group thermodynamicsmodel,with a covariant definition ofGibbs equilibriumvia invariances
throughco-adjointactionofagrouponitsmomentspace,definingphysicalobservables likeenergy,
heat, andmoment as pure geometrical objects. Using geometric Planck temperature of Souriau
model and symplectic cocycle notion, theFishermetric is identifiedas a Souriaugeometric heat
capacity. TheSouriaumodel isbasedonaffinerepresentationofLiegroupandLiealgebra thatwe
comparewithKoszulworksonG/Khomogeneousspaceandbijectivecorrespondencebetweenthe
setofG-invariantflatconnectionsonG/Kandthesetofaffinerepresentationsof theLiealgebraof
G. In theframeworkofLiegroupthermodynamics,anEuler-Poincaréequation iselaboratedwith
respect to thermodynamicvariables, andanewvariationalprincipal for thermodynamics isbuilt
throughaninvariantPoincaré-Cartan-Souriau integral. TheSouriau-Fishermetric is linkedtoKKS
(Kostant–Kirillov–Souriau) 2-formthat associates a canonicalhomogeneous symplecticmanifold
to the co-adjoint orbits. Weapply thismodel in the frameworkof informationgeometry for the
actionof anaffinegroup for exponential families, andprovide some illustrationsofuse cases for
multivariategaussiandensities. Informationgeometryispresentedinthecontextof theseminalwork
ofFréchetandhisClairaut-Legendreequation. TheSouriaumodelof statisticalphysics isvalidated
as compatiblewith theBaliangaugemodelof thermodynamics. Werecall theprecursorworkof
Casalisonaffinegroupinvariance fornaturalexponential families.
Keywords:Liegroupthermodynamics;momentmap;Gibbsdensity;Gibbsequilibrium;maximum
entropy; informationgeometry; symplecticgeometry;Cartan-Poincaré integral invariant;geometric
mechanics;Euler-Poincaréequation;Fishermetric;gaugetheory;affinegroup
Lorsque le faitqu’onrencontreestenoppositionavecune théorie régnante, il fautaccepter
le fait et abandonner la théorie, alorsmêmequecelle-ci, soutenuepardegrandsnoms,
estgénéralementadoptée
—ClaudeBernard in“Introductionà l’Étudede laMédecineExpérimentale” [1]
Au départ, la théorie de la stabilité structurelle m’avait paru d’une telle ampleur
et d’une telle généralité, qu’avec elle je pouvais espérer en quelque sorte remplacer
la thermodynamiquepar lagéométrie,géométriserenuncertainsens lathermodynamique,
éliminer des considérations thermodynamiques tous les aspects à caractèremesurable
et stochastiques pour ne conserver que la caractérisation géométrique correspondante
desattracteurs.
—RenéThomin“Logoset théoriedesCatastrophes” [2]
Entropy2016,18, 386 49 www.mdpi.com/journal/entropy
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik