Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 52 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 52 - in Differential Geometrical Theory of Statistics

Image of the Page - 52 -

Image of the Page - 52 - in Differential Geometrical Theory of Statistics

Text of the Page - 52 -

Entropy2016,18, 386 • Wehaveestablished that theaffinerepresentationofLiegroupandLiealgebraby Jean-Marie Souriau isequivalent to Jean-LouisKoszul’saffinerepresentationdevelopedin the frameworkof hessiangeometryof convexsharpcones. BothSouriauandKoszulhaveelaboratedequations requestedforLiegroupandLiealgebratoensuretheexistenceofanaffinerepresentation.Wehave comparedbothapproachesofSouriauandKoszul ina table. • Wehave applied the Souriaumodel for exponential families and especially formultivariate Gaussiandensities. • Wehaveapplied theSouriau-KoszulmodelGibbsdensity to compute themaximumentropy density forsymmetricpositivedefinitematrices,usingthe innerproduct〈η,ξ〉=Tr(ηTξ),∀η,ξ∈ Sym(n)givenbyCartan-Killingform.TheGibbsdensity(generalizationofGaussianlawfortheses matricesanddefinedasmaximumentropydensity): pξˆ(ξ)= e −〈Θ−1(ξˆ),ξ〉+Φ(Θ−1(ξˆ)) =ψΩ(Id) · [ det ( αξˆ−1 )] ·e−Tr(αξˆ−1ξ) withα= n+1 2 (5) • For thecaseofmultivariateGaussiandensities,wehaveconsideredGA(n)asub-groupofaffine group, thatwedefinedbya(n+1)× (n+1)embedding inmatrixLiegroupGaf f , andthatacts formultivariateGaussian lawsby: [ Y 1 ] = [ R1/2 m 0 1 ][ X 1 ] = [ R1/2X+m 1 ] , ⎧⎪⎪⎨⎪⎪⎩ (m,R)∈Rn×Sym+(n) M= [ R1/2 m 0 1 ] ∈Gaf f X≈ℵ(0, I)→Y≈ℵ(m,R) (6) • FormultivariateGaussiandensities,aswehave identifiedtheactingsub-groupofaffinegroup M,wehavealsodevelopedthecomputationof theassociatedLiealgebrasηL andηR, adjointand coadjointoperators,andespecially theSouriau“momentmap”ΠR:〈 nL,M−1nRM 〉 = 〈ΠR,nR〉 withM= [ R1/2 m 0 1 ] , nL= ⎡⎣ R−1/2 .R1/2 R−1/2 .m 0 0 ⎤⎦ andηR= ⎡⎣ R−1/2 .R1/2 .m−R−1/2 .R1/2 .m 0 0 ⎤⎦ ⇒ΠR= ⎡⎣ R−1/2 .R1/2+R−1 .mmT R−1 .m 0 0 ⎤⎦ (7) Using Souriau Theorem (geometrization ofNoether theorem), weuse the property that this momentmapΠR is constant (its componentsareequal toNoether invariants): dΠR dt =0⇒ ⎧⎨⎩ R −1 .R+R−1 .mmT=B= cste R−1 .m= b= cste (8) to reduce theEuler-LagrangeequationofgeodesicsbetweentwomultivariateGaussiandensities:⎧⎨⎩ .. R+ . m . mT− .RR−1 .R=0 .. m− .RR−1 .m=0 (9) to this reducedequationofgeodesics: 52
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics