Seite - 52 - in Differential Geometrical Theory of Statistics
Bild der Seite - 52 -
Text der Seite - 52 -
Entropy2016,18, 386
• Wehaveestablished that theaffinerepresentationofLiegroupandLiealgebraby Jean-Marie
Souriau isequivalent to Jean-LouisKoszul’saffinerepresentationdevelopedin the frameworkof
hessiangeometryof convexsharpcones. BothSouriauandKoszulhaveelaboratedequations
requestedforLiegroupandLiealgebratoensuretheexistenceofanaffinerepresentation.Wehave
comparedbothapproachesofSouriauandKoszul ina table.
• Wehave applied the Souriaumodel for exponential families and especially formultivariate
Gaussiandensities.
• Wehaveapplied theSouriau-KoszulmodelGibbsdensity to compute themaximumentropy
density forsymmetricpositivedefinitematrices,usingthe innerproduct〈η,ξ〉=Tr(ηTξ),∀η,ξ∈
Sym(n)givenbyCartan-Killingform.TheGibbsdensity(generalizationofGaussianlawfortheses
matricesanddefinedasmaximumentropydensity):
pξˆ(ξ)= e −〈Θ−1(ξˆ),ξ〉+Φ(Θ−1(ξˆ)) =ψΩ(Id) · [
det (
αξˆ−1 )] ·e−Tr(αξˆ−1ξ)
withα= n+1
2 (5)
• For thecaseofmultivariateGaussiandensities,wehaveconsideredGA(n)asub-groupofaffine
group, thatwedefinedbya(n+1)× (n+1)embedding inmatrixLiegroupGaf f , andthatacts
formultivariateGaussian lawsby:
[
Y
1 ]
= [
R1/2 m
0 1 ][
X
1 ]
= [
R1/2X+m
1 ]
, ⎧⎪⎪⎨⎪⎪⎩ (m,R)∈Rn×Sym+(n)
M= [
R1/2 m
0 1 ]
∈Gaf f
X≈ℵ(0, I)→Y≈ℵ(m,R) (6)
• FormultivariateGaussiandensities,aswehave identifiedtheactingsub-groupofaffinegroup
M,wehavealsodevelopedthecomputationof theassociatedLiealgebrasηL andηR, adjointand
coadjointoperators,andespecially
theSouriau“momentmap”ΠR:〈
nL,M−1nRM 〉
= 〈ΠR,nR〉
withM= [ R1/2 m
0 1 ]
, nL= ⎡⎣ R−1/2 .R1/2 R−1/2 .m
0 0 ⎤⎦ andηR= ⎡⎣ R−1/2 .R1/2 .m−R−1/2 .R1/2 .m
0 0 ⎤⎦
⇒ΠR= ⎡⎣ R−1/2 .R1/2+R−1 .mmT R−1 .m
0 0 ⎤⎦ (7)
Using Souriau Theorem (geometrization ofNoether theorem), weuse the property that this
momentmapΠR is constant (its componentsareequal toNoether invariants):
dΠR
dt =0⇒ ⎧⎨⎩ R −1 .R+R−1 .mmT=B= cste
R−1 .m= b= cste (8)
to reduce theEuler-LagrangeequationofgeodesicsbetweentwomultivariateGaussiandensities:⎧⎨⎩
..
R+ .
m .
mT− .RR−1 .R=0
..
m− .RR−1 .m=0 (9)
to this reducedequationofgeodesics:
52
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik