Page - 53 - in Differential Geometrical Theory of Statistics
Image of the Page - 53 -
Text of the Page - 53 -
Entropy2016,18, 386
⎧⎨⎩ .
m=Rb
.
R=R ( B−bmT) (10)
thatwesolveby“geodesicshooting” technicbasedonEriksenequationofexponentialmap.
• For the families ofmultivariateGaussiandensities, thatwehave identified as homogeneous
manifoldwith theassociatedsub-groupof theaffinegroup [
R1/2 m
0 1 ]
,wehaveconsidered
theelementsofexponential families, thatplaytheroleofgeometricheatQ inSouriauLiegroup
thermodynamics,andβ thegeometric (Planck) temperature:
Q= ξˆ= [
E [z]
E [ zzT ] ]
= [
m
R+mmT ]
, β= ⎡⎢⎣ −R−1m1
2 R−1 ⎤⎥⎦ (11)
Wehaveconsideredthat theseelementsarehomeomorphto the (n+1)× (n+1)matrixelements:
Q= ξˆ= [ R+mmT m
0 0 ]
∈ g∗ , β= ⎡⎢⎣ 12R−1 −R−1m
0 0 ⎤⎥⎦ ∈ g (12)
tocompute theSouriausymplecticcocycleof theLiegroup:
θ(M)= ξˆ(AdM(β))−Ad∗Mξˆ (13)
where theadjointoperator isequal to:
AdMβ= ⎡⎣ 12Ω−1 −Ω−1n
0 0 ⎤⎦withΩ=R′1/2RR′−1/2 andn=(1
2 m′+R′1/2m )
(14)
with
ξˆ(AdM(β))= [
Ω+nnT n
0 0 ]
(15)
andtheco-adjointoperator:
Ad∗Mξˆ= [ R+mmT−mm′T R′1/2m
0 0 ]
(16)
• Finally,wehave computed theSouriau-Fishermetric gβ([β,Z1] , [β,Z2]) = Θ˜β(Z1, [β,Z2]) for
multivariateGaussiandensities,givenby:
gβ([β,Z1] , [β,Z2])= Θ˜β(Z1, [β,Z2])= Θ˜(Z1, [β,Z2])+ 〈
ξˆ, [Z1, [β,Z2]] 〉
= 〈Θ(Z1) , [β,Z2]〉+ 〈
ξˆ, [Z1, [β,Z2]] 〉 (17)
withelementofLiealgebragivenbyZ= ⎡⎣ 12Ω−1 −Ω−1n
0 0 ⎤⎦.
Theplanof thepaper isas follows.After this introduction inSection1,wedevelopinSection2
the position of Souriau symplecticmodel of statistical physics in the historical developments of
53
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik