Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 53 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 53 - in Differential Geometrical Theory of Statistics

Bild der Seite - 53 -

Bild der Seite - 53 - in Differential Geometrical Theory of Statistics

Text der Seite - 53 -

Entropy2016,18, 386 ⎧⎨⎩ . m=Rb . R=R ( B−bmT) (10) thatwesolveby“geodesicshooting” technicbasedonEriksenequationofexponentialmap. • For the families ofmultivariateGaussiandensities, thatwehave identified as homogeneous manifoldwith theassociatedsub-groupof theaffinegroup [ R1/2 m 0 1 ] ,wehaveconsidered theelementsofexponential families, thatplaytheroleofgeometricheatQ inSouriauLiegroup thermodynamics,andβ thegeometric (Planck) temperature: Q= ξˆ= [ E [z] E [ zzT ] ] = [ m R+mmT ] , β= ⎡⎢⎣ −R−1m1 2 R−1 ⎤⎥⎦ (11) Wehaveconsideredthat theseelementsarehomeomorphto the (n+1)× (n+1)matrixelements: Q= ξˆ= [ R+mmT m 0 0 ] ∈ g∗ , β= ⎡⎢⎣ 12R−1 −R−1m 0 0 ⎤⎥⎦ ∈ g (12) tocompute theSouriausymplecticcocycleof theLiegroup: θ(M)= ξˆ(AdM(β))−Ad∗Mξˆ (13) where theadjointoperator isequal to: AdMβ= ⎡⎣ 12Ω−1 −Ω−1n 0 0 ⎤⎦withΩ=R′1/2RR′−1/2 andn=(1 2 m′+R′1/2m ) (14) with ξˆ(AdM(β))= [ Ω+nnT n 0 0 ] (15) andtheco-adjointoperator: Ad∗Mξˆ= [ R+mmT−mm′T R′1/2m 0 0 ] (16) • Finally,wehave computed theSouriau-Fishermetric gβ([β,Z1] , [β,Z2]) = Θ˜β(Z1, [β,Z2]) for multivariateGaussiandensities,givenby: gβ([β,Z1] , [β,Z2])= Θ˜β(Z1, [β,Z2])= Θ˜(Z1, [β,Z2])+ 〈 ξˆ, [Z1, [β,Z2]] 〉 = 〈Θ(Z1) , [β,Z2]〉+ 〈 ξˆ, [Z1, [β,Z2]] 〉 (17) withelementofLiealgebragivenbyZ= ⎡⎣ 12Ω−1 −Ω−1n 0 0 ⎤⎦. Theplanof thepaper isas follows.After this introduction inSection1,wedevelopinSection2 the position of Souriau symplecticmodel of statistical physics in the historical developments of 53
zurĂźck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
SchlagwĂśrter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics