Seite - 53 - in Differential Geometrical Theory of Statistics
Bild der Seite - 53 -
Text der Seite - 53 -
Entropy2016,18, 386
â§â¨âŠ .
m=Rb
.
R=R ( BâbmT) (10)
thatwesolvebyâgeodesicshootingâ technicbasedonEriksenequationofexponentialmap.
⢠For the families ofmultivariateGaussiandensities, thatwehave identiďŹed as homogeneous
manifoldwith theassociatedsub-groupof theafďŹnegroup [
R1/2 m
0 1 ]
,wehaveconsidered
theelementsofexponential families, thatplaytheroleofgeometricheatQ inSouriauLiegroup
thermodynamics,andβ thegeometric (Planck) temperature:
Q= ΞË= [
E [z]
E [ zzT ] ]
= [
m
R+mmT ]
, β= âĄâ˘âŁ âRâ1m1
2 Râ1 â¤âĽâŚ (11)
Wehaveconsideredthat theseelementsarehomeomorphto the (n+1)Ă (n+1)matrixelements:
Q= ΞË= [ R+mmT m
0 0 ]
â gâ , β= âĄâ˘âŁ 12Râ1 âRâ1m
0 0 â¤âĽâŚ â g (12)
tocompute theSouriausymplecticcocycleof theLiegroup:
θ(M)= ΞË(AdM(β))âAdâMÎžË (13)
where theadjointoperator isequal to:
AdMβ= âĄâŁ 12Ίâ1 âΊâ1n
0 0 â¤âŚwithΊ=Râ˛1/2RRâ˛â1/2 andn=(1
2 mâ˛+Râ˛1/2m )
(14)
with
ΞË(AdM(β))= [
Ί+nnT n
0 0 ]
(15)
andtheco-adjointoperator:
AdâMΞË= [ R+mmTâmmâ˛T Râ˛1/2m
0 0 ]
(16)
⢠Finally,wehave computed theSouriau-Fishermetric gβ([β,Z1] , [β,Z2]) = ÎËβ(Z1, [β,Z2]) for
multivariateGaussiandensities,givenby:
gβ([β,Z1] , [β,Z2])= ÎËβ(Z1, [β,Z2])= ÎË(Z1, [β,Z2])+ âŠ
ΞË, [Z1, [β,Z2]] âŞ
= ăÎ(Z1) , [β,Z2]ă+ âŠ
ΞË, [Z1, [β,Z2]] ⪠(17)
withelementofLiealgebragivenbyZ= âĄâŁ 12Ίâ1 âΊâ1n
0 0 â¤âŚ.
Theplanof thepaper isas follows.After this introduction inSection1,wedevelopinSection2
the position of Souriau symplecticmodel of statistical physics in the historical developments of
53
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- FrĂŠdĂŠric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- SchlagwĂśrter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik