Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 54 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 54 - in Differential Geometrical Theory of Statistics

Image of the Page - 54 -

Image of the Page - 54 - in Differential Geometrical Theory of Statistics

Text of the Page - 54 -

Entropy2016,18, 386 thermodynamic concepts. In Section 3, we develop and revisit the Lie group thermodynamics model of Jean-Marie Souriau in modern notations. In Section 4, we make the link between SouriauRiemannianmetric and Fishermetric deïŹned as a geometric heat capacity of Lie group thermodynamics. InSection5,weelaborateEuler-LagrangeequationsofLiegroupthermodynamics andavariationalmodelbasedonPoincarĂ©-Cartan integral invariant. InSection6,weexploreSouriau afïŹne representationofLiegroupandLiealgebra (including thenotionsof: afïŹne representations andcocycles,Souriaumomentmapandcocycles, equivarianceofSouriaumomentmap,actionofLie grouponasymplecticmanifoldanddualspacesofïŹnite-dimensionalLiealgebras)andweanalyzethe linkandparallelismswithKoszulafïŹnerepresentation,developedinanothercontext (comparison is synthetized ina table). InSection7,we illustrateKoszulandSouriauLiegroupmodelsof information geometry formultivariateGaussiandensities. InSection8,after identifyingtheafïŹnegroupacting for these densities, we compute the Souriaumomentmap to obtain the Euler-PoincarĂ© equation, solvedbygeodesic shootingmethod. InSection9, SouriauRiemannianmetricdeïŹnedbycocycle formultivariateGaussiandensities is computed. Wegiveaconclusion inSection10with research prospects in the frameworkof afïŹnePoissongeometry [13], Bismut stochasticmechanics [14] and secondorderextensionof theGibbsstate [15,16].Wehavethreeappendices:AppendixAdevelops the Clairaut(-Legendre)equationofMauriceFrĂ©chetassociatedto“distinguishedfunctions”asaseminal equationof informationgeometry;AppendixBisaboutaBalianGaugemodelof thermodynamicsand its compliancewith theSouriaumodel;AppendixCisdevotedto the linkofCasalis-Letac’sworkson afïŹnegroupinvariance fornaturalexponential familieswithSouriau’sworks. 2. PositionofSouriauSymplecticModelofStatisticalPhysics inHistoricalDevelopmentsof ThermodynamicConcepts In thisSection,wewill explain theemergenceof thermodynamicconcepts thatgiverise to the generalizationof theSouriaumodelofstatisticalphysics. TounderstandSouriau’s theoreticalmodel ofheat,wehave toconsiderïŹrsthiswork ingeometricmechanicswherehe introducedtheconceptof “momentmap”and“symplecticcohomology”.Wewill then introduce theconceptof“characteristic function”developedbyFrançoisMassieu,andgeneralizedbySouriauonhomogeneoussymplectic manifolds. Inhisstatisticalphysicsmodel,Souriauhasalsogeneralizedthenotionof“heatcapacity” thatwas initially extendedbyPierreDuhemas akey structure to jointly considermechanics and thermodynamicsunder theumbrellaof the same theory. PierreDuhemhasalso integrated, in the corpus, theMassieu’scharacteristic functionasa thermodynamicpotential. Souriau’s idea todevelop acovariantmodelofGibbsdensityonhomogeneousmanifoldwasalso inïŹ‚uencedby theseminal workofConstantinCarathĂ©odory thataxiomatizedthermodynamics in1909basedonCarnot’sworks. Souriauhasadaptedhisgeometricmechanicalmodel for the theoryofheat,whereHenriPoincarĂ©did notsucceed inhispaperonattemptsofmechanicalexplanationfor theprinciplesof thermodynamics. Lagrange’s works on “mĂ©canique analytique (analyticmechanics)” has been interpreted by Jean-MarieSouriau in the frameworkofdifferentialgeometryandhas initiatedanewdisciplinecalled afterSouriau,“mĂ©caniquegĂ©omĂ©trique (geometricmechanics)” [17–19]. Souriauhasobservedthat the collectionofmotionsofadynamical systemisamanifoldwithanantisymmetricïŹ‚at tensor that isa symplectic formwhere thestructurecontainsall thepertinent informationof thestateof thesystem (positions, velocities, forces, etc.). Souriausaid: “CequeLagrange avu, quen’a pas vuLaplace, c’était la structure symplectique (What Lagrange saw, that Laplace didn’t see, was the symplectic structure” [20]. Using the symmetries of a symplecticmanifold, Souriau introduced amappingwhich he called the“momentmap” [21–23],which takes its values ina spaceattached to thegroupof symmetries (in thedual spaceof itsLiealgebra). He [10] calleddynamicalgroupseverydimensionalgroupof symplectomorphisms (an isomorphismbetween symplecticmanifolds, a transformationof phase space that isvolume-preserving),andintroducedGalileogroupforclassicalmechanicsandPoincarĂ© groupforrelativisticmechanics (botharesub-groupsofafïŹnegroup[24,25]). For instance,aGalileo 54
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics