Page - 54 - in Differential Geometrical Theory of Statistics
Image of the Page - 54 -
Text of the Page - 54 -
Entropy2016,18, 386
thermodynamic concepts. In Section 3, we develop and revisit the Lie group thermodynamics
model of Jean-Marie Souriau in modern notations. In Section 4, we make the link between
SouriauRiemannianmetric and Fishermetric deïŹned as a geometric heat capacity of Lie group
thermodynamics. InSection5,weelaborateEuler-LagrangeequationsofLiegroupthermodynamics
andavariationalmodelbasedonPoincaré-Cartan integral invariant. InSection6,weexploreSouriau
afïŹne representationofLiegroupandLiealgebra (including thenotionsof: afïŹne representations
andcocycles,Souriaumomentmapandcocycles, equivarianceofSouriaumomentmap,actionofLie
grouponasymplecticmanifoldanddualspacesofïŹnite-dimensionalLiealgebras)andweanalyzethe
linkandparallelismswithKoszulafïŹnerepresentation,developedinanothercontext (comparison is
synthetized ina table). InSection7,we illustrateKoszulandSouriauLiegroupmodelsof information
geometry formultivariateGaussiandensities. InSection8,after identifyingtheafïŹnegroupacting
for these densities, we compute the Souriaumomentmap to obtain the Euler-Poincaré equation,
solvedbygeodesic shootingmethod. InSection9, SouriauRiemannianmetricdeïŹnedbycocycle
formultivariateGaussiandensities is computed. Wegiveaconclusion inSection10with research
prospects in the frameworkof afïŹnePoissongeometry [13], Bismut stochasticmechanics [14] and
secondorderextensionof theGibbsstate [15,16].Wehavethreeappendices:AppendixAdevelops the
Clairaut(-Legendre)equationofMauriceFrĂ©chetassociatedtoâdistinguishedfunctionsâasaseminal
equationof informationgeometry;AppendixBisaboutaBalianGaugemodelof thermodynamicsand
its compliancewith theSouriaumodel;AppendixCisdevotedto the linkofCasalis-Letacâsworkson
afïŹnegroupinvariance fornaturalexponential familieswithSouriauâsworks.
2. PositionofSouriauSymplecticModelofStatisticalPhysics inHistoricalDevelopmentsof
ThermodynamicConcepts
In thisSection,wewill explain theemergenceof thermodynamicconcepts thatgiverise to the
generalizationof theSouriaumodelofstatisticalphysics. TounderstandSouriauâs theoreticalmodel
ofheat,wehave toconsiderïŹrsthiswork ingeometricmechanicswherehe introducedtheconceptof
âmomentmapâandâsymplecticcohomologyâ.Wewill then introduce theconceptofâcharacteristic
functionâdevelopedbyFrançoisMassieu,andgeneralizedbySouriauonhomogeneoussymplectic
manifolds. Inhisstatisticalphysicsmodel,Souriauhasalsogeneralizedthenotionofâheatcapacityâ
thatwas initially extendedbyPierreDuhemas akey structure to jointly considermechanics and
thermodynamicsunder theumbrellaof the same theory. PierreDuhemhasalso integrated, in the
corpus, theMassieuâscharacteristic functionasa thermodynamicpotential. Souriauâs idea todevelop
acovariantmodelofGibbsdensityonhomogeneousmanifoldwasalso inïŹuencedby theseminal
workofConstantinCarathĂ©odory thataxiomatizedthermodynamics in1909basedonCarnotâsworks.
Souriauhasadaptedhisgeometricmechanicalmodel for the theoryofheat,whereHenriPoincarédid
notsucceed inhispaperonattemptsofmechanicalexplanationfor theprinciplesof thermodynamics.
Lagrangeâs works on âmĂ©canique analytique (analyticmechanics)â has been interpreted by
Jean-MarieSouriau in the frameworkofdifferentialgeometryandhas initiatedanewdisciplinecalled
afterSouriau,âmĂ©caniquegĂ©omĂ©trique (geometricmechanics)â [17â19]. Souriauhasobservedthat the
collectionofmotionsofadynamical systemisamanifoldwithanantisymmetricïŹat tensor that isa
symplectic formwhere thestructurecontainsall thepertinent informationof thestateof thesystem
(positions, velocities, forces, etc.). Souriausaid: âCequeLagrange avu, quenâa pas vuLaplace, câĂ©tait
la structure symplectique (What Lagrange saw, that Laplace didnât see, was the symplectic structureâ [20].
Using the symmetries of a symplecticmanifold, Souriau introduced amappingwhich he called
theâmomentmapâ [21â23],which takes its values ina spaceattached to thegroupof symmetries
(in thedual spaceof itsLiealgebra). He [10] calleddynamicalgroupseverydimensionalgroupof
symplectomorphisms (an isomorphismbetween symplecticmanifolds, a transformationof phase
space that isvolume-preserving),andintroducedGalileogroupforclassicalmechanicsandPoincaré
groupforrelativisticmechanics (botharesub-groupsofafïŹnegroup[24,25]). For instance,aGalileo
54
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik