Seite - 54 - in Differential Geometrical Theory of Statistics
Bild der Seite - 54 -
Text der Seite - 54 -
Entropy2016,18, 386
thermodynamic concepts. In Section 3, we develop and revisit the Lie group thermodynamics
model of Jean-Marie Souriau in modern notations. In Section 4, we make the link between
SouriauRiemannianmetric and Fishermetric defined as a geometric heat capacity of Lie group
thermodynamics. InSection5,weelaborateEuler-LagrangeequationsofLiegroupthermodynamics
andavariationalmodelbasedonPoincaré-Cartan integral invariant. InSection6,weexploreSouriau
affine representationofLiegroupandLiealgebra (including thenotionsof: affine representations
andcocycles,Souriaumomentmapandcocycles, equivarianceofSouriaumomentmap,actionofLie
grouponasymplecticmanifoldanddualspacesoffinite-dimensionalLiealgebras)andweanalyzethe
linkandparallelismswithKoszulaffinerepresentation,developedinanothercontext (comparison is
synthetized ina table). InSection7,we illustrateKoszulandSouriauLiegroupmodelsof information
geometry formultivariateGaussiandensities. InSection8,after identifyingtheaffinegroupacting
for these densities, we compute the Souriaumomentmap to obtain the Euler-Poincaré equation,
solvedbygeodesic shootingmethod. InSection9, SouriauRiemannianmetricdefinedbycocycle
formultivariateGaussiandensities is computed. Wegiveaconclusion inSection10with research
prospects in the frameworkof affinePoissongeometry [13], Bismut stochasticmechanics [14] and
secondorderextensionof theGibbsstate [15,16].Wehavethreeappendices:AppendixAdevelops the
Clairaut(-Legendre)equationofMauriceFréchetassociatedto“distinguishedfunctions”asaseminal
equationof informationgeometry;AppendixBisaboutaBalianGaugemodelof thermodynamicsand
its compliancewith theSouriaumodel;AppendixCisdevotedto the linkofCasalis-Letac’sworkson
affinegroupinvariance fornaturalexponential familieswithSouriau’sworks.
2. PositionofSouriauSymplecticModelofStatisticalPhysics inHistoricalDevelopmentsof
ThermodynamicConcepts
In thisSection,wewill explain theemergenceof thermodynamicconcepts thatgiverise to the
generalizationof theSouriaumodelofstatisticalphysics. TounderstandSouriau’s theoreticalmodel
ofheat,wehave toconsiderfirsthiswork ingeometricmechanicswherehe introducedtheconceptof
“momentmap”and“symplecticcohomology”.Wewill then introduce theconceptof“characteristic
function”developedbyFrançoisMassieu,andgeneralizedbySouriauonhomogeneoussymplectic
manifolds. Inhisstatisticalphysicsmodel,Souriauhasalsogeneralizedthenotionof“heatcapacity”
thatwas initially extendedbyPierreDuhemas akey structure to jointly considermechanics and
thermodynamicsunder theumbrellaof the same theory. PierreDuhemhasalso integrated, in the
corpus, theMassieu’scharacteristic functionasa thermodynamicpotential. Souriau’s idea todevelop
acovariantmodelofGibbsdensityonhomogeneousmanifoldwasalso influencedby theseminal
workofConstantinCarathéodory thataxiomatizedthermodynamics in1909basedonCarnot’sworks.
Souriauhasadaptedhisgeometricmechanicalmodel for the theoryofheat,whereHenriPoincarédid
notsucceed inhispaperonattemptsofmechanicalexplanationfor theprinciplesof thermodynamics.
Lagrange’s works on “mécanique analytique (analyticmechanics)” has been interpreted by
Jean-MarieSouriau in the frameworkofdifferentialgeometryandhas initiatedanewdisciplinecalled
afterSouriau,“mécaniquegéométrique (geometricmechanics)” [17–19]. Souriauhasobservedthat the
collectionofmotionsofadynamical systemisamanifoldwithanantisymmetricflat tensor that isa
symplectic formwhere thestructurecontainsall thepertinent informationof thestateof thesystem
(positions, velocities, forces, etc.). Souriausaid: “CequeLagrange avu, quen’a pas vuLaplace, c’était
la structure symplectique (What Lagrange saw, that Laplace didn’t see, was the symplectic structure” [20].
Using the symmetries of a symplecticmanifold, Souriau introduced amappingwhich he called
the“momentmap” [21–23],which takes its values ina spaceattached to thegroupof symmetries
(in thedual spaceof itsLiealgebra). He [10] calleddynamicalgroupseverydimensionalgroupof
symplectomorphisms (an isomorphismbetween symplecticmanifolds, a transformationof phase
space that isvolume-preserving),andintroducedGalileogroupforclassicalmechanicsandPoincaré
groupforrelativisticmechanics (botharesub-groupsofaffinegroup[24,25]). For instance,aGalileo
54
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik