Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 54 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 54 - in Differential Geometrical Theory of Statistics

Bild der Seite - 54 -

Bild der Seite - 54 - in Differential Geometrical Theory of Statistics

Text der Seite - 54 -

Entropy2016,18, 386 thermodynamic concepts. In Section 3, we develop and revisit the Lie group thermodynamics model of Jean-Marie Souriau in modern notations. In Section 4, we make the link between SouriauRiemannianmetric and Fishermetric defined as a geometric heat capacity of Lie group thermodynamics. InSection5,weelaborateEuler-LagrangeequationsofLiegroupthermodynamics andavariationalmodelbasedonPoincaré-Cartan integral invariant. InSection6,weexploreSouriau affine representationofLiegroupandLiealgebra (including thenotionsof: affine representations andcocycles,Souriaumomentmapandcocycles, equivarianceofSouriaumomentmap,actionofLie grouponasymplecticmanifoldanddualspacesoffinite-dimensionalLiealgebras)andweanalyzethe linkandparallelismswithKoszulaffinerepresentation,developedinanothercontext (comparison is synthetized ina table). InSection7,we illustrateKoszulandSouriauLiegroupmodelsof information geometry formultivariateGaussiandensities. InSection8,after identifyingtheaffinegroupacting for these densities, we compute the Souriaumomentmap to obtain the Euler-Poincaré equation, solvedbygeodesic shootingmethod. InSection9, SouriauRiemannianmetricdefinedbycocycle formultivariateGaussiandensities is computed. Wegiveaconclusion inSection10with research prospects in the frameworkof affinePoissongeometry [13], Bismut stochasticmechanics [14] and secondorderextensionof theGibbsstate [15,16].Wehavethreeappendices:AppendixAdevelops the Clairaut(-Legendre)equationofMauriceFréchetassociatedto“distinguishedfunctions”asaseminal equationof informationgeometry;AppendixBisaboutaBalianGaugemodelof thermodynamicsand its compliancewith theSouriaumodel;AppendixCisdevotedto the linkofCasalis-Letac’sworkson affinegroupinvariance fornaturalexponential familieswithSouriau’sworks. 2. PositionofSouriauSymplecticModelofStatisticalPhysics inHistoricalDevelopmentsof ThermodynamicConcepts In thisSection,wewill explain theemergenceof thermodynamicconcepts thatgiverise to the generalizationof theSouriaumodelofstatisticalphysics. TounderstandSouriau’s theoreticalmodel ofheat,wehave toconsiderfirsthiswork ingeometricmechanicswherehe introducedtheconceptof “momentmap”and“symplecticcohomology”.Wewill then introduce theconceptof“characteristic function”developedbyFrançoisMassieu,andgeneralizedbySouriauonhomogeneoussymplectic manifolds. Inhisstatisticalphysicsmodel,Souriauhasalsogeneralizedthenotionof“heatcapacity” thatwas initially extendedbyPierreDuhemas akey structure to jointly considermechanics and thermodynamicsunder theumbrellaof the same theory. PierreDuhemhasalso integrated, in the corpus, theMassieu’scharacteristic functionasa thermodynamicpotential. Souriau’s idea todevelop acovariantmodelofGibbsdensityonhomogeneousmanifoldwasalso influencedby theseminal workofConstantinCarathéodory thataxiomatizedthermodynamics in1909basedonCarnot’sworks. Souriauhasadaptedhisgeometricmechanicalmodel for the theoryofheat,whereHenriPoincarédid notsucceed inhispaperonattemptsofmechanicalexplanationfor theprinciplesof thermodynamics. Lagrange’s works on “mécanique analytique (analyticmechanics)” has been interpreted by Jean-MarieSouriau in the frameworkofdifferentialgeometryandhas initiatedanewdisciplinecalled afterSouriau,“mécaniquegéométrique (geometricmechanics)” [17–19]. Souriauhasobservedthat the collectionofmotionsofadynamical systemisamanifoldwithanantisymmetricflat tensor that isa symplectic formwhere thestructurecontainsall thepertinent informationof thestateof thesystem (positions, velocities, forces, etc.). Souriausaid: “CequeLagrange avu, quen’a pas vuLaplace, c’était la structure symplectique (What Lagrange saw, that Laplace didn’t see, was the symplectic structure” [20]. Using the symmetries of a symplecticmanifold, Souriau introduced amappingwhich he called the“momentmap” [21–23],which takes its values ina spaceattached to thegroupof symmetries (in thedual spaceof itsLiealgebra). He [10] calleddynamicalgroupseverydimensionalgroupof symplectomorphisms (an isomorphismbetween symplecticmanifolds, a transformationof phase space that isvolume-preserving),andintroducedGalileogroupforclassicalmechanicsandPoincaré groupforrelativisticmechanics (botharesub-groupsofaffinegroup[24,25]). For instance,aGalileo 54
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics