Page - 56 - in Differential Geometrical Theory of Statistics
Image of the Page - 56 -
Text of the Page - 56 -
Entropy2016,18, 386
relativity in relativisticmechanics. Themaximumentropyprinciple [42–51] is preserved, and the
Gibbsdensity isgivenbythedensityofmaximumentropy(amongtheequilibriumstates forwhich
theaveragevalueof theenergytakesaprescribedvalue, theGibbsmeasuresare thosewhichhave the
largestentropy),butwithanewprinciple“If adynamical systemis invariantunderaLie subgroupG’of
theGalileogroup, then thenatural equilibria of the systemforms theGibbs ensemble of thedynamicalgroup
G’”[10]. TheclassicalnotionofGibbscanonicalensemble isextendedforahomogneoussymplectic
manifold onwhich aLie group (dynamic group) has a symplectic action. When the group is not
abelian(non-commutativegroup), thesymmetry isbroken,andnew“cohomological”relationsshould
beverifiedinLiealgebraof thegroup[52–55].Anaturalequilibriumstatewill thusbecharacterizedby
anelementof theLiealgebraof theLiegroup,determiningtheequilibriumtemperatureβ. Theentropy
s(Q), parametrizedbyQ thegeometricheat (meanofenergyU, elementof thedualLiealgebra) is
definedbytheLegendre transform[56–59]of theMassieupotentialΦ(β)parametrizedbyβ (Φ(β) is
theminus logarithmof thepartitionfunctionψΩ(β)):
s(Q)= 〈β,Q〉−Φ(β)with ⎧⎪⎪⎨⎪⎪⎩ Q= ∂Φ
∂β ∈ g∗
β= ∂s
∂Q ∈ g (19)
pGibbs(ξ)= eΦ(β)−〈β,U(ξ)〉= e−〈β,U(ξ)〉
M e−〈β,U(ξ)〉dω ,
Q= ∂Φ(β)
∂β = M U(ξ)e−〈β,U(ξ)〉dω
M e−〈β,U(ξ)〉dω =
M U(ξ)p(ξ)dω withΦ(β)=−log
M e−〈β,U(ξ)〉dω (20)
Souriaucompletedhis“geometricheat theory”by introducinga2-formintheLiealgebra, that is
aRiemannianmetric tensor in thevalues of adjoint orbit of β, [β,Z]withZ an element of theLie
algebra. Thismetric isgivenfor (β,Q):
gβ([β,Z1] , [β,Z2])= 〈Θ(Z1) , [β,Z2]〉+〈Q, [Z1, [β,Z2]]〉 (21)
whereΘ isacocycleof theLiealgebra,definedbyΘ=Teθwithθacocycleof theLiegroupdefined
byθ(M)=Q(AdM(β))−Ad∗MQ.Wehaveobservedthat thismetricgβ isalsogivenbythehessian
of theMassieupotential gβ =−∂ 2Φ
∂β2 = ∂logψΩ
∂β2 asFishermetric in classical informationgeometry
theory [60], andso this isageneralizationof theFishermetric forhomogeneousmanifold.Wecall this
newmetric theSouriau-Fishermetric.Asgβ=−∂Q∂β , Souriaucompareditbyanalogywithclassical
thermodynamics toa“geometric specificheat” (geometriccalorificcapacity).
The potential theory of thermodynamics and the introduction of “characteristic function”
(previousfunctionΦ(β)=−logψΩ(β) inSouriautheory)wasinitiatedbyFrançoisJacquesDominique
Massieu [61–64]. Massieuwas the sonofPierreFrançoisMarieMassieuandThérèseClaireCastel.
Hemarried in1862withMlleMorandandhad2children.HegraduatedfromEcolePolytechnique
in1851andEcoledesMinesdeParis in 1956, hehas integrated“CorpsdesMines”. Hedefended
hisPh.D. in1861on“Sur les intégrales algébriquesdesproblèmesdemécanique”andon“Sur lemodede
propagationdesondesplanes et la surfacede l’onde élémentairedans les cristauxbiréfringents àdeuxaxes” [65]
with the jury composed of Lamé, Delaunay et Puiseux. In 1870, FrançoisMassieu presented his
paper to theFrenchAcademyofScienceson“characteristic functionsof thevariousfluidsandthe theory
of vapors” [61]. Thedesignof the characteristic function is thefinest scientific title ofMr. Massieu.
Aprominent judge, JosephBertrand, donot hesitate todeclare, in a statement read to theFrench
AcademyofSciences25 July1870, that“the introductionof this function in formulas that summarizeall the
possible consequencesof the two fundamental theoremsseems, for the theory, a similar service almost equivalent
56
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik