Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 56 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 56 - in Differential Geometrical Theory of Statistics

Bild der Seite - 56 -

Bild der Seite - 56 - in Differential Geometrical Theory of Statistics

Text der Seite - 56 -

Entropy2016,18, 386 relativity in relativisticmechanics. Themaximumentropyprinciple [42–51] is preserved, and the Gibbsdensity isgivenbythedensityofmaximumentropy(amongtheequilibriumstates forwhich theaveragevalueof theenergytakesaprescribedvalue, theGibbsmeasuresare thosewhichhave the largestentropy),butwithanewprinciple“If adynamical systemis invariantunderaLie subgroupG’of theGalileogroup, then thenatural equilibria of the systemforms theGibbs ensemble of thedynamicalgroup G’”[10]. TheclassicalnotionofGibbscanonicalensemble isextendedforahomogneoussymplectic manifold onwhich aLie group (dynamic group) has a symplectic action. When the group is not abelian(non-commutativegroup), thesymmetry isbroken,andnew“cohomological”relationsshould beverifiedinLiealgebraof thegroup[52–55].Anaturalequilibriumstatewill thusbecharacterizedby anelementof theLiealgebraof theLiegroup,determiningtheequilibriumtemperatureβ. Theentropy s(Q), parametrizedbyQ thegeometricheat (meanofenergyU, elementof thedualLiealgebra) is definedbytheLegendre transform[56–59]of theMassieupotentialΦ(β)parametrizedbyβ (Φ(β) is theminus logarithmof thepartitionfunctionψΩ(β)): s(Q)= 〈β,Q〉−Φ(β)with ⎧⎪⎪⎨⎪⎪⎩ Q= ∂Φ ∂β ∈ g∗ β= ∂s ∂Q ∈ g (19) pGibbs(ξ)= eΦ(β)−〈β,U(ξ)〉= e−〈β,U(ξ)〉 M e−〈β,U(ξ)〉dω , Q= ∂Φ(β) ∂β = M U(ξ)e−〈β,U(ξ)〉dω M e−〈β,U(ξ)〉dω = M U(ξ)p(ξ)dω withΦ(β)=−log M e−〈β,U(ξ)〉dω (20) Souriaucompletedhis“geometricheat theory”by introducinga2-formintheLiealgebra, that is aRiemannianmetric tensor in thevalues of adjoint orbit of β, [β,Z]withZ an element of theLie algebra. Thismetric isgivenfor (β,Q): gβ([β,Z1] , [β,Z2])= 〈Θ(Z1) , [β,Z2]〉+〈Q, [Z1, [β,Z2]]〉 (21) whereΘ isacocycleof theLiealgebra,definedbyΘ=Teθwithθacocycleof theLiegroupdefined byθ(M)=Q(AdM(β))−Ad∗MQ.Wehaveobservedthat thismetricgβ isalsogivenbythehessian of theMassieupotential gβ =−∂ 2Φ ∂β2 = ∂logψΩ ∂β2 asFishermetric in classical informationgeometry theory [60], andso this isageneralizationof theFishermetric forhomogeneousmanifold.Wecall this newmetric theSouriau-Fishermetric.Asgβ=−∂Q∂β , Souriaucompareditbyanalogywithclassical thermodynamics toa“geometric specificheat” (geometriccalorificcapacity). The potential theory of thermodynamics and the introduction of “characteristic function” (previousfunctionΦ(β)=−logψΩ(β) inSouriautheory)wasinitiatedbyFrançoisJacquesDominique Massieu [61–64]. Massieuwas the sonofPierreFrançoisMarieMassieuandThérèseClaireCastel. Hemarried in1862withMlleMorandandhad2children.HegraduatedfromEcolePolytechnique in1851andEcoledesMinesdeParis in 1956, hehas integrated“CorpsdesMines”. Hedefended hisPh.D. in1861on“Sur les intégrales algébriquesdesproblèmesdemécanique”andon“Sur lemodede propagationdesondesplanes et la surfacede l’onde élémentairedans les cristauxbiréfringents àdeuxaxes” [65] with the jury composed of Lamé, Delaunay et Puiseux. In 1870, FrançoisMassieu presented his paper to theFrenchAcademyofScienceson“characteristic functionsof thevariousfluidsandthe theory of vapors” [61]. Thedesignof the characteristic function is thefinest scientific title ofMr. Massieu. Aprominent judge, JosephBertrand, donot hesitate todeclare, in a statement read to theFrench AcademyofSciences25 July1870, that“the introductionof this function in formulas that summarizeall the possible consequencesof the two fundamental theoremsseems, for the theory, a similar service almost equivalent 56
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics