Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 57 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 57 - in Differential Geometrical Theory of Statistics

Image of the Page - 57 -

Image of the Page - 57 - in Differential Geometrical Theory of Statistics

Text of the Page - 57 -

Entropy2016,18, 386 to that Clausius hasmade by linking the Carnot’s theorem to entropy” [66]. The finalmanuscriptwas publishedbyMassieu in1873, “Exposédesprincipes fondamentauxde la théoriemécaniquede la chaleur (Notedestinée à servird’introductionauMémoirede l’auteur sur les fonctions caractéristiquesdesdiversfluides et la théoriedesvapeurs)” [63]. Massieu introducedthe followingpotentialΦ(β), called“characteristic function”,as illustrated inFigure2, that is thepotentialusedbySouriautogeneralize the theory: s(Q)= 〈β,Q〉−Φ(β) ⇒ β= 1T Φ= QT −S. However, inhis thirdpaper,Massieuwas influencedbyM.Bertrand, as illustrated in Figure3, to replace thevariableβ= 1T (thatheused inhis twofirstpapers)byT. Wehave then to wait50yearsmore for thepaperofPlanck,whointroducedagain thegoodvariableβ= 1T, andthen generalizedbySouriau,givingtoPlancktemperatureβanontologicalandgeometricstatusaselement of theLiealgebraof thedynamicgroup. Figure2.Extract fromthesecondpaperofFrançoisMassieutotheFrenchAcademyofSciences[61,62]. Figure3. RemarkofMassieu in1876paper [64],whereheexplainedwhyhe took intoaccount the “goodadvice”ofBertrandtoreplacevariable1/T,used inhis initialpaperof1869,bythevariableT. ThisLiegroupthermodynamicsofSouriau isable toexplainastronomicalphenomenon(rotation ofcelestialbodies: theEarthandthestars rotatingabout themselves). Thegeometric temperatureβ canbealso interpretedasa space-timevector (generalizationof the temperaturevectorofPlanck), where the temperaturevectorandentropyfluxare indualityunifyingheatconductionandviscosity (equationsofFourierandNavier). Incaseofcentrifugesystem(e.g.,usedforenrichmentofuranium), theGibbsEquilibriumstate [60,67]aregivenbySouriauequationsas thevariation inconcentrationof thecomponentsofaninhomogeneousgas.Classicalstatisticalmechanicscorrespondstothedynamical groupof timetranslations, forwhichwerecover fromSouriauequations theconceptsandprinciples of classical thermodynamics (temperature, energy,heat,work, entropy, thermodynamicpotentials) andof thekinetic theoryofgases (pressure, specificheats,Maxwell’svelocitydistribution,etc.). Souriaualsostudiedcontinuousmediumthermodynamics,where the“temperaturevector” isno longerconstrainedtobe inLiealgebra,butonlycontrainedbyphenomenologicequations(e.g.,Navier equations, etc.). For thermodynamicequilibrium, the“temperaturevector” is thenaKillingvector 57
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics