Page - 57 - in Differential Geometrical Theory of Statistics
Image of the Page - 57 -
Text of the Page - 57 -
Entropy2016,18, 386
to that Clausius hasmade by linking the Carnot’s theorem to entropy” [66]. The finalmanuscriptwas
publishedbyMassieu in1873, “Exposédesprincipes fondamentauxde la théoriemécaniquede la chaleur
(Notedestinée à servird’introductionauMémoirede l’auteur sur les fonctions caractéristiquesdesdiversfluides
et la théoriedesvapeurs)” [63].
Massieu introducedthe followingpotentialΦ(β), called“characteristic function”,as illustrated
inFigure2, that is thepotentialusedbySouriautogeneralize the theory: s(Q)= 〈β,Q〉−Φ(β) ⇒
β= 1T
Φ= QT −S. However, inhis thirdpaper,Massieuwas influencedbyM.Bertrand, as illustrated in
Figure3, to replace thevariableβ= 1T (thatheused inhis twofirstpapers)byT. Wehave then to
wait50yearsmore for thepaperofPlanck,whointroducedagain thegoodvariableβ= 1T, andthen
generalizedbySouriau,givingtoPlancktemperatureβanontologicalandgeometricstatusaselement
of theLiealgebraof thedynamicgroup.
Figure2.Extract fromthesecondpaperofFrançoisMassieutotheFrenchAcademyofSciences[61,62].
Figure3. RemarkofMassieu in1876paper [64],whereheexplainedwhyhe took intoaccount the
“goodadvice”ofBertrandtoreplacevariable1/T,used inhis initialpaperof1869,bythevariableT.
ThisLiegroupthermodynamicsofSouriau isable toexplainastronomicalphenomenon(rotation
ofcelestialbodies: theEarthandthestars rotatingabout themselves). Thegeometric temperatureβ
canbealso interpretedasa space-timevector (generalizationof the temperaturevectorofPlanck),
where the temperaturevectorandentropyfluxare indualityunifyingheatconductionandviscosity
(equationsofFourierandNavier). Incaseofcentrifugesystem(e.g.,usedforenrichmentofuranium),
theGibbsEquilibriumstate [60,67]aregivenbySouriauequationsas thevariation inconcentrationof
thecomponentsofaninhomogeneousgas.Classicalstatisticalmechanicscorrespondstothedynamical
groupof timetranslations, forwhichwerecover fromSouriauequations theconceptsandprinciples
of classical thermodynamics (temperature, energy,heat,work, entropy, thermodynamicpotentials)
andof thekinetic theoryofgases (pressure, specificheats,Maxwell’svelocitydistribution,etc.).
Souriaualsostudiedcontinuousmediumthermodynamics,where the“temperaturevector” isno
longerconstrainedtobe inLiealgebra,butonlycontrainedbyphenomenologicequations(e.g.,Navier
equations, etc.). For thermodynamicequilibrium, the“temperaturevector” is thenaKillingvector
57
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik