Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 57 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 57 - in Differential Geometrical Theory of Statistics

Bild der Seite - 57 -

Bild der Seite - 57 - in Differential Geometrical Theory of Statistics

Text der Seite - 57 -

Entropy2016,18, 386 to that Clausius hasmade by linking the Carnot’s theorem to entropy” [66]. The finalmanuscriptwas publishedbyMassieu in1873, “Exposédesprincipes fondamentauxde la théoriemécaniquede la chaleur (Notedestinée à servird’introductionauMémoirede l’auteur sur les fonctions caractéristiquesdesdiversfluides et la théoriedesvapeurs)” [63]. Massieu introducedthe followingpotentialΦ(β), called“characteristic function”,as illustrated inFigure2, that is thepotentialusedbySouriautogeneralize the theory: s(Q)= 〈β,Q〉−Φ(β) ⇒ β= 1T Φ= QT −S. However, inhis thirdpaper,Massieuwas influencedbyM.Bertrand, as illustrated in Figure3, to replace thevariableβ= 1T (thatheused inhis twofirstpapers)byT. Wehave then to wait50yearsmore for thepaperofPlanck,whointroducedagain thegoodvariableβ= 1T, andthen generalizedbySouriau,givingtoPlancktemperatureβanontologicalandgeometricstatusaselement of theLiealgebraof thedynamicgroup. Figure2.Extract fromthesecondpaperofFrançoisMassieutotheFrenchAcademyofSciences[61,62]. Figure3. RemarkofMassieu in1876paper [64],whereheexplainedwhyhe took intoaccount the “goodadvice”ofBertrandtoreplacevariable1/T,used inhis initialpaperof1869,bythevariableT. ThisLiegroupthermodynamicsofSouriau isable toexplainastronomicalphenomenon(rotation ofcelestialbodies: theEarthandthestars rotatingabout themselves). Thegeometric temperatureβ canbealso interpretedasa space-timevector (generalizationof the temperaturevectorofPlanck), where the temperaturevectorandentropyfluxare indualityunifyingheatconductionandviscosity (equationsofFourierandNavier). Incaseofcentrifugesystem(e.g.,usedforenrichmentofuranium), theGibbsEquilibriumstate [60,67]aregivenbySouriauequationsas thevariation inconcentrationof thecomponentsofaninhomogeneousgas.Classicalstatisticalmechanicscorrespondstothedynamical groupof timetranslations, forwhichwerecover fromSouriauequations theconceptsandprinciples of classical thermodynamics (temperature, energy,heat,work, entropy, thermodynamicpotentials) andof thekinetic theoryofgases (pressure, specificheats,Maxwell’svelocitydistribution,etc.). Souriaualsostudiedcontinuousmediumthermodynamics,where the“temperaturevector” isno longerconstrainedtobe inLiealgebra,butonlycontrainedbyphenomenologicequations(e.g.,Navier equations, etc.). For thermodynamicequilibrium, the“temperaturevector” is thenaKillingvector 57
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics