Page - 59 - in Differential Geometrical Theory of Statistics
Image of the Page - 59 -
Text of the Page - 59 -
Entropy2016,18, 386
der Thermodynamik) by Constantin Carathéodory based on Carnot’s works [77]. Carathéodory
introducedentropythroughamathematicalapproachbasedonthegeometricbehaviorofacertain
classofpartialdifferential equationscalledPfaffians.Carathéodory’s investigationsstartbyrevisiting
the first law and reformulating the second law of thermodynamics in the form of two axioms.
Thefirstaxiomapplies toamultiphasesystemchangeunderadiabaticconditions (axiomofclassical
thermodynamics due to Clausius [78,79]). The second axiom assumes that in the neighborhood
of any equilibrium state of a system (of any number of thermodynamic coordinates), there exist
states that are inaccessible by reversible adiabatic processes. In the book of Misha Gromov
“Metric Structures for Riemannian andNon-Riemannian Spaces”,written and edited byPierre Pansu
and JacquesLafontaine, a newmetric is introduced called “Carnot-Carathéodorymetric”. In one of
his papers,MishaGromov [80,81] gives historical remarks “This result (which seems obvious by the
modern standards) appears (in amore general form) in the 1909-paper by Carathéorody on formalization
of the classical thermodynamicswhere horizontal curves roughly correspond to adiabatic processes. In fact,
theaboveproofmaybeperformed in the languageofCarnot (cycles) and for this reason themetrisdistHwere
christened ‘Carnot-Carathéodory’ inGromov-Lafontaine-Pansubook”[82].WhenIaskthisquestiontoPierre
Pansu,hegavemetheanswer that“Thesection4of [76], entitledHilfsatzausderTheoriedesPfaffschen
Gleichungen(Lemmafromthe theoryofPfaffianequations)openswithastatement relating to thedifferential
1-forms. Carathéodorysays, If aPfaffianequationdx0+X1dx1+X2dx2+ ...+Xndxn=0 isgiven, inwhich
theXiarefinite, continuous,differentiable functionsof thexi, andoneknows that inanyneighborhoodof an
arbitrarypointPof the spaceofxi there is apoint that one cannot reachalongacurve that satisfies this equation
then the expressionmustnecessarily possess amultiplier thatmakes it into a complete differential”. This is
confirmedinthe introductionofhispaper [76],whereCarathéodorysaid“Finally, inorder tobeable to
treat systemswitharbitrarilymanydegrees of freedomfromtheoutset, insteadof theCarnot cycle that is almost
alwaysused, but is intuitiveandeasy tocontrol only for systemswith twodegreesof freedom,onemust employa
theoremfromthe theoryofPfaffiandifferential equations, forwhicha simpleproof isgiven in the fourth section”.
Wehavealso tomakereference toHenriPoincaré [83] thatpublishedthepaper“Onattemptsof
mechanical explanation for theprinciples of thermodynamics (Sur les tentativesd’explicationmécaniquedes
principes de la thermodynamique)” at the Comptes rendus de l’Académie des sciences in 1889 [84],
in which he tried to consolidate links between mechanics and thermomechanics principles.
TheseelementswerealsodevelopedinPoincaré’s lectureof1892[85]on“thermodynamique” inChapter
XVII“Reductionof thermodynamicsprinciples to thegeneralprinciples ofmechanics (Réductiondesprincipes
de laThermodynamiqueauxprincipesgénérauxde lamécanique)”. Poincaréwrites inhisbook[85]“It is
otherwisewith the second lawof thermodynamics. Clausiuswas thefirst toattempt tobring it to theprinciples
ofmechanics, butnot succeedsatisfactorily.Helmholtz inhismemoirontheprinciple of least actionsdevelopeda
theorymuchmoreperfect thanthatofClausius.However, it cannotaccount for irreversiblephenomena. (Il enest
autrementdusecondprincipede la thermodynamique. Clausius, a lepremier, tentéde le ramenerauxprincipes
de laMécanique,mais sansyréussird’unemanière satisfaisante.Helmoltzdans sonmémoire sur leprincipede
lamoindreaction, adéveloppéune théoriebeaucoupplusparfaite quecelledeClausius; cependant ellenepeut
rendrecomptedesphénomènes irréversibles.)”.AboutHelmoltzwork,Poincaréobserves [85]“It follows
from these examples that theHelmholtz hypothesis is true in the case of body turning around an axis; So it
seemsapplicable tovortexmotionsofmolecules (Il résultede ces exemplesque l’hypothèsed’Helmoltz est exacte
dans le casde corps tournantautourd’unaxe; elleparaitdoncapplicable auxmouvements tourbillonnairesdes
molecules.)”,butheadds in the followingthat theHelmoltzmodel isalso true in thecaseofvibrating
motionsasmolecularmotions.However,hefinallyobserves that theHelmoltzmodelcannotexplain
the increasingofentropyandconcludes [85]“All attemptsof thisnaturemustbeabandoned; theonlyones
thathaveanychanceof successare thosebasedonthe interventionof statistical laws, for example, thekinetic
theoryofgases. Thisview,which I cannotdevelophere, canbe summedup ina somewhatvulgarwayas follows:
Supposewewant toplaceagrainof oats in themiddleof aheapofwheat; itwill be easy; thensupposewewanted
tofind it andremove it;wecannotachieve it. All irreversiblephenomena, according to somephysicists,would
bebuilt on thismodel (Toutes les tentativesdecettenaturedoiventdoncêtreabandonnées; les seulesquiaient
59
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik