Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 59 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 59 - in Differential Geometrical Theory of Statistics

Bild der Seite - 59 -

Bild der Seite - 59 - in Differential Geometrical Theory of Statistics

Text der Seite - 59 -

Entropy2016,18, 386 der Thermodynamik) by Constantin CarathĂ©odory based on Carnot’s works [77]. CarathĂ©odory introducedentropythroughamathematicalapproachbasedonthegeometricbehaviorofacertain classofpartialdifferential equationscalledPfafïŹans.CarathĂ©odory’s investigationsstartbyrevisiting the ïŹrst law and reformulating the second law of thermodynamics in the form of two axioms. TheïŹrstaxiomapplies toamultiphasesystemchangeunderadiabaticconditions (axiomofclassical thermodynamics due to Clausius [78,79]). The second axiom assumes that in the neighborhood of any equilibrium state of a system (of any number of thermodynamic coordinates), there exist states that are inaccessible by reversible adiabatic processes. In the book of Misha Gromov “Metric Structures for Riemannian andNon-Riemannian Spaces”,written and edited byPierre Pansu and JacquesLafontaine, a newmetric is introduced called “Carnot-CarathĂ©odorymetric”. In one of his papers,MishaGromov [80,81] gives historical remarks “This result (which seems obvious by the modern standards) appears (in amore general form) in the 1909-paper by CarathĂ©orody on formalization of the classical thermodynamicswhere horizontal curves roughly correspond to adiabatic processes. In fact, theaboveproofmaybeperformed in the languageofCarnot (cycles) and for this reason themetrisdistHwere christened ‘Carnot-CarathĂ©odory’ inGromov-Lafontaine-Pansubook”[82].WhenIaskthisquestiontoPierre Pansu,hegavemetheanswer that“Thesection4of [76], entitledHilfsatzausderTheoriedesPfaffschen Gleichungen(Lemmafromthe theoryofPfafïŹanequations)openswithastatement relating to thedifferential 1-forms. CarathĂ©odorysays, If aPfafïŹanequationdx0+X1dx1+X2dx2+ ...+Xndxn=0 isgiven, inwhich theXiareïŹnite, continuous,differentiable functionsof thexi, andoneknows that inanyneighborhoodof an arbitrarypointPof the spaceofxi there is apoint that one cannot reachalongacurve that satisïŹes this equation then the expressionmustnecessarily possess amultiplier thatmakes it into a complete differential”. This is conïŹrmedinthe introductionofhispaper [76],whereCarathĂ©odorysaid“Finally, inorder tobeable to treat systemswitharbitrarilymanydegrees of freedomfromtheoutset, insteadof theCarnot cycle that is almost alwaysused, but is intuitiveandeasy tocontrol only for systemswith twodegreesof freedom,onemust employa theoremfromthe theoryofPfafïŹandifferential equations, forwhicha simpleproof isgiven in the fourth section”. Wehavealso tomakereference toHenriPoincarĂ© [83] thatpublishedthepaper“Onattemptsof mechanical explanation for theprinciples of thermodynamics (Sur les tentativesd’explicationmĂ©caniquedes principes de la thermodynamique)” at the Comptes rendus de l’AcadĂ©mie des sciences in 1889 [84], in which he tried to consolidate links between mechanics and thermomechanics principles. TheseelementswerealsodevelopedinPoincaré’s lectureof1892[85]on“thermodynamique” inChapter XVII“Reductionof thermodynamicsprinciples to thegeneralprinciples ofmechanics (RĂ©ductiondesprincipes de laThermodynamiqueauxprincipesgĂ©nĂ©rauxde lamĂ©canique)”. PoincarĂ©writes inhisbook[85]“It is otherwisewith the second lawof thermodynamics. Clausiuswas theïŹrst toattempt tobring it to theprinciples ofmechanics, butnot succeedsatisfactorily.Helmholtz inhismemoirontheprinciple of least actionsdevelopeda theorymuchmoreperfect thanthatofClausius.However, it cannotaccount for irreversiblephenomena. (Il enest autrementdusecondprincipede la thermodynamique. Clausius, a lepremier, tentĂ©de le ramenerauxprincipes de laMĂ©canique,mais sansyrĂ©ussird’unemaniĂšre satisfaisante.Helmoltzdans sonmĂ©moire sur leprincipede lamoindreaction, adĂ©veloppĂ©une thĂ©oriebeaucoupplusparfaite quecelledeClausius; cependant ellenepeut rendrecomptedesphĂ©nomĂšnes irrĂ©versibles.)”.AboutHelmoltzwork,PoincarĂ©observes [85]“It follows from these examples that theHelmholtz hypothesis is true in the case of body turning around an axis; So it seemsapplicable tovortexmotionsofmolecules (Il rĂ©sultede ces exemplesque l’hypothĂšsed’Helmoltz est exacte dans le casde corps tournantautourd’unaxe; elleparaitdoncapplicable auxmouvements tourbillonnairesdes molecules.)”,butheadds in the followingthat theHelmoltzmodel isalso true in thecaseofvibrating motionsasmolecularmotions.However,heïŹnallyobserves that theHelmoltzmodelcannotexplain the increasingofentropyandconcludes [85]“All attemptsof thisnaturemustbeabandoned; theonlyones thathaveanychanceof successare thosebasedonthe interventionof statistical laws, for example, thekinetic theoryofgases. Thisview,which I cannotdevelophere, canbe summedup ina somewhatvulgarwayas follows: Supposewewant toplaceagrainof oats in themiddleof aheapofwheat; itwill be easy; thensupposewewanted toïŹnd it andremove it;wecannotachieve it. All irreversiblephenomena, according to somephysicists,would bebuilt on thismodel (Toutes les tentativesdecettenaturedoiventdoncĂȘtreabandonnĂ©es; les seulesquiaient 59
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics