Seite - 59 - in Differential Geometrical Theory of Statistics
Bild der Seite - 59 -
Text der Seite - 59 -
Entropy2016,18, 386
der Thermodynamik) by Constantin CarathĂ©odory based on Carnotâs works [77]. CarathĂ©odory
introducedentropythroughamathematicalapproachbasedonthegeometricbehaviorofacertain
classofpartialdifferential equationscalledPfafïŹans.CarathĂ©odoryâs investigationsstartbyrevisiting
the ïŹrst law and reformulating the second law of thermodynamics in the form of two axioms.
TheïŹrstaxiomapplies toamultiphasesystemchangeunderadiabaticconditions (axiomofclassical
thermodynamics due to Clausius [78,79]). The second axiom assumes that in the neighborhood
of any equilibrium state of a system (of any number of thermodynamic coordinates), there exist
states that are inaccessible by reversible adiabatic processes. In the book of Misha Gromov
âMetric Structures for Riemannian andNon-Riemannian Spacesâ,written and edited byPierre Pansu
and JacquesLafontaine, a newmetric is introduced called âCarnot-CarathĂ©odorymetricâ. In one of
his papers,MishaGromov [80,81] gives historical remarks âThis result (which seems obvious by the
modern standards) appears (in amore general form) in the 1909-paper by Carathéorody on formalization
of the classical thermodynamicswhere horizontal curves roughly correspond to adiabatic processes. In fact,
theaboveproofmaybeperformed in the languageofCarnot (cycles) and for this reason themetrisdistHwere
christened âCarnot-CarathĂ©odoryâ inGromov-Lafontaine-Pansubookâ[82].WhenIaskthisquestiontoPierre
Pansu,hegavemetheanswer thatâThesection4of [76], entitledHilfsatzausderTheoriedesPfaffschen
Gleichungen(Lemmafromthe theoryofPfafïŹanequations)openswithastatement relating to thedifferential
1-forms. CarathĂ©odorysays, If aPfafïŹanequationdx0+X1dx1+X2dx2+ ...+Xndxn=0 isgiven, inwhich
theXiareïŹnite, continuous,differentiable functionsof thexi, andoneknows that inanyneighborhoodof an
arbitrarypointPof the spaceofxi there is apoint that one cannot reachalongacurve that satisïŹes this equation
then the expressionmustnecessarily possess amultiplier thatmakes it into a complete differentialâ. This is
conïŹrmedinthe introductionofhispaper [76],whereCarathĂ©odorysaidâFinally, inorder tobeable to
treat systemswitharbitrarilymanydegrees of freedomfromtheoutset, insteadof theCarnot cycle that is almost
alwaysused, but is intuitiveandeasy tocontrol only for systemswith twodegreesof freedom,onemust employa
theoremfromthe theoryofPfafïŹandifferential equations, forwhicha simpleproof isgiven in the fourth sectionâ.
Wehavealso tomakereference toHenriPoincarĂ© [83] thatpublishedthepaperâOnattemptsof
mechanical explanation for theprinciples of thermodynamics (Sur les tentativesdâexplicationmĂ©caniquedes
principes de la thermodynamique)â at the Comptes rendus de lâAcadĂ©mie des sciences in 1889 [84],
in which he tried to consolidate links between mechanics and thermomechanics principles.
TheseelementswerealsodevelopedinPoincarĂ©âs lectureof1892[85]onâthermodynamiqueâ inChapter
XVIIâReductionof thermodynamicsprinciples to thegeneralprinciples ofmechanics (RĂ©ductiondesprincipes
de laThermodynamiqueauxprincipesgĂ©nĂ©rauxde lamĂ©canique)â. PoincarĂ©writes inhisbook[85]âIt is
otherwisewith the second lawof thermodynamics. Clausiuswas theïŹrst toattempt tobring it to theprinciples
ofmechanics, butnot succeedsatisfactorily.Helmholtz inhismemoirontheprinciple of least actionsdevelopeda
theorymuchmoreperfect thanthatofClausius.However, it cannotaccount for irreversiblephenomena. (Il enest
autrementdusecondprincipede la thermodynamique. Clausius, a lepremier, tentéde le ramenerauxprincipes
de laMĂ©canique,mais sansyrĂ©ussirdâunemaniĂšre satisfaisante.Helmoltzdans sonmĂ©moire sur leprincipede
lamoindreaction, adéveloppéune théoriebeaucoupplusparfaite quecelledeClausius; cependant ellenepeut
rendrecomptedesphĂ©nomĂšnes irrĂ©versibles.)â.AboutHelmoltzwork,PoincarĂ©observes [85]âIt follows
from these examples that theHelmholtz hypothesis is true in the case of body turning around an axis; So it
seemsapplicable tovortexmotionsofmolecules (Il rĂ©sultede ces exemplesque lâhypothĂšsedâHelmoltz est exacte
dans le casde corps tournantautourdâunaxe; elleparaitdoncapplicable auxmouvements tourbillonnairesdes
molecules.)â,butheadds in the followingthat theHelmoltzmodel isalso true in thecaseofvibrating
motionsasmolecularmotions.However,heïŹnallyobserves that theHelmoltzmodelcannotexplain
the increasingofentropyandconcludes [85]âAll attemptsof thisnaturemustbeabandoned; theonlyones
thathaveanychanceof successare thosebasedonthe interventionof statistical laws, for example, thekinetic
theoryofgases. Thisview,which I cannotdevelophere, canbe summedup ina somewhatvulgarwayas follows:
Supposewewant toplaceagrainof oats in themiddleof aheapofwheat; itwill be easy; thensupposewewanted
toïŹnd it andremove it;wecannotachieve it. All irreversiblephenomena, according to somephysicists,would
bebuilt on thismodel (Toutes les tentativesdecettenaturedoiventdoncĂȘtreabandonnĂ©es; les seulesquiaient
59
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik