Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 61 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 61 - in Differential Geometrical Theory of Statistics

Image of the Page - 61 -

Image of the Page - 61 - in Differential Geometrical Theory of Statistics

Text of the Page - 61 -

Entropy2016,18, 386 3.RevisitedSouriauSymplecticModelofStatisticalPhysics In thisSection,wewill revisit theSouriaumodelof thermodynamicsbutwithmodernnotations, replacingpersonalSouriauconventionsusedinhisbookof1970bymoreclassicalones. In1970,Souriau introducedtheconceptofco-adjointactionofagrouponitsmomentumspace (or“momentmap”:mapping inducedbysymplecticmanifoldsymmetries),basedontheorbitmethod works, that allows todeïŹnephysical observables like energy, heat andmomentumormoment as puregeometrical objects (themomentmap takes its values ina spacedeterminedby thegroupof symmetries: thedualspaceof itsLiealgebra). Themoment(um)mapisaconstantof themotionandis associatedtosymplecticcohomology(assignmentofalgebraic invariants toa topological space that arises fromthealgebraicdualizationof thehomologyconstruction). Souriau introducedthemoment mapin1965ina lecturenotesatMarseilleUniversityandpublishedit in1966. Souriaugavetheformal deïŹnitionanditsnamebasedonitsphysical interpretation in1967. Souriauthenstudied itsproperties ofequivariance,andformulatedthecoadjointorbit theoreminhisbook in1970.However, inhisbook, Souriaualsoobserved inChapter IV thatGibbsequilibriumstates arenot covariantbydynamical groups (GalileoorPoincarĂ©groups)andthenhedevelopedacovariantmodel thathecalled“Liegroup thermodynamics”,where equilibriumsare indexedbya“geometric (Planck) temperature”, givenbya vectorÎČ that lies in theLiealgebraof thedynamicalgroup. ForSouriau, all thedetails of classical mechanicsappearasgeometricnecessities (e.g.,mass is themeasureof thesymplectic cohomologyof theactionofaGalileogroup). BasedonthisnewcovariantmodelofthermodynamicGibbsequilibrium, Souriauhas formulatedstatisticalmechanicsandthermodynamics in the frameworkofsymplectic geometrybyuseofsymplecticmomentsanddistribution-tensorconcepts,givingageometricstatus for temperature,heatandentropy. There is a controversy about the name “momentum map” or “moment map”. Smale [92] referred to thismapas the“angularmomentum”,whileSouriauused theFrenchword“moment”. CushmanandDuistermaat [93]havesuggestedthat theproperEnglish translationofSouriau’sFrench wordwas “momentum”which ïŹt betterwith standard usage inmechanics. On the other hand, GuilleminandSternberg [94]havevalidatedthenamegivenbySouriauandhaveused“moment” in English. In thispaper,wewill see thatname“moment”givenbySouriauwasthemostappropriate word. InhisChapter IVofhisbook[10], studyingstatisticalmechanics,Souriau[10]has ingeniously observedthatmomentsof inertia inmechanicsareequivalent tomoments inprobability inhisnew geometricmodelofstatisticalphysics.Wewill see that inSouriauLiegroupthermodynamicmodel, thesestatisticalmomentswillbegivenbytheenergyandtheheatdeïŹnedgeometricallybySouriau, andwillbeassociatedwith“momentmap”indualLiealgebra. ThisworkhasbeenextendedbyClaudeVallĂ©e [5,6]andGerydeSaxcĂ© [4,8,95,96].Morerecently, Kapranovhasalsogivenathermodynamical interpretationof themomentmapfor toricvarieties [97] andPavlov, thermodynamics fromthedifferentialgeometrystandpoint [98]. Theconservationof themomentofaHamiltonianactionwascalledbySouriauthe“symplectic or geometricNoether theorem”. Consideringphases spaceas symplecticmanifold, cotangentïŹberof conïŹgurationspacewithcanonical symplectic form, ifHamiltonianhasLiealgebra, thenthemoment map is constant along the system integral curves. Noether theorem is obtained by considering independentlyeachcomponentof themomentmap. In a ïŹrst step to establish new foundations of thermodynamics, Souriau [10] has deïŹned a Gibbs canonical ensemble on a symplecticmanifoldM for a Lie group action onM. In classical statistical mechanics, a state is given by the solution of Liouville equation on the phase space, thepartitionfunction.Assymplecticmanifoldshaveacompletelycontinuousmeasure, invariantby diffeomorphisms, theLiouvillemeasureλ, all statistical stateswill be theproduct of theLiouville measurebythescalar functiongivenbythegeneralizedpartitionfunction eΊ(ÎČ)−〈ÎČ,U(Ο)〉deïŹnedby the energyU (deïŹned in the dual of the Lie algebra of this dynamical group) and the geometric temperature ÎČ, whereΊ is a normalizing constant such the mass of probability is equal to 1, 61
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics