Page - 61 - in Differential Geometrical Theory of Statistics
Image of the Page - 61 -
Text of the Page - 61 -
Entropy2016,18, 386
3.RevisitedSouriauSymplecticModelofStatisticalPhysics
In thisSection,wewill revisit theSouriaumodelof thermodynamicsbutwithmodernnotations,
replacingpersonalSouriauconventionsusedinhisbookof1970bymoreclassicalones.
In1970,Souriau introducedtheconceptofco-adjointactionofagrouponitsmomentumspace
(orâmomentmapâ:mapping inducedbysymplecticmanifoldsymmetries),basedontheorbitmethod
works, that allows todeïŹnephysical observables like energy, heat andmomentumormoment as
puregeometrical objects (themomentmap takes its values ina spacedeterminedby thegroupof
symmetries: thedualspaceof itsLiealgebra). Themoment(um)mapisaconstantof themotionandis
associatedtosymplecticcohomology(assignmentofalgebraic invariants toa topological space that
arises fromthealgebraicdualizationof thehomologyconstruction). Souriau introducedthemoment
mapin1965ina lecturenotesatMarseilleUniversityandpublishedit in1966. Souriaugavetheformal
deïŹnitionanditsnamebasedonitsphysical interpretation in1967. Souriauthenstudied itsproperties
ofequivariance,andformulatedthecoadjointorbit theoreminhisbook in1970.However, inhisbook,
Souriaualsoobserved inChapter IV thatGibbsequilibriumstates arenot covariantbydynamical
groups (GalileoorPoincarĂ©groups)andthenhedevelopedacovariantmodel thathecalledâLiegroup
thermodynamicsâ,where equilibriumsare indexedbyaâgeometric (Planck) temperatureâ, givenbya
vectorÎČ that lies in theLiealgebraof thedynamicalgroup. ForSouriau, all thedetails of classical
mechanicsappearasgeometricnecessities (e.g.,mass is themeasureof thesymplectic cohomologyof
theactionofaGalileogroup). BasedonthisnewcovariantmodelofthermodynamicGibbsequilibrium,
Souriauhas formulatedstatisticalmechanicsandthermodynamics in the frameworkofsymplectic
geometrybyuseofsymplecticmomentsanddistribution-tensorconcepts,givingageometricstatus
for temperature,heatandentropy.
There is a controversy about the name âmomentum mapâ or âmoment mapâ. Smale [92]
referred to thismapas theâangularmomentumâ,whileSouriauused theFrenchwordâmomentâ.
CushmanandDuistermaat [93]havesuggestedthat theproperEnglish translationofSouriauâsFrench
wordwas âmomentumâwhich ïŹt betterwith standard usage inmechanics. On the other hand,
GuilleminandSternberg [94]havevalidatedthenamegivenbySouriauandhaveusedâmomentâ in
English. In thispaper,wewill see thatnameâmomentâgivenbySouriauwasthemostappropriate
word. InhisChapter IVofhisbook[10], studyingstatisticalmechanics,Souriau[10]has ingeniously
observedthatmomentsof inertia inmechanicsareequivalent tomoments inprobability inhisnew
geometricmodelofstatisticalphysics.Wewill see that inSouriauLiegroupthermodynamicmodel,
thesestatisticalmomentswillbegivenbytheenergyandtheheatdeïŹnedgeometricallybySouriau,
andwillbeassociatedwithâmomentmapâindualLiealgebra.
ThisworkhasbeenextendedbyClaudeVallée [5,6]andGerydeSaxcé [4,8,95,96].Morerecently,
Kapranovhasalsogivenathermodynamical interpretationof themomentmapfor toricvarieties [97]
andPavlov, thermodynamics fromthedifferentialgeometrystandpoint [98].
Theconservationof themomentofaHamiltonianactionwascalledbySouriautheâsymplectic
or geometricNoether theoremâ. Consideringphases spaceas symplecticmanifold, cotangentïŹberof
conïŹgurationspacewithcanonical symplectic form, ifHamiltonianhasLiealgebra, thenthemoment
map is constant along the system integral curves. Noether theorem is obtained by considering
independentlyeachcomponentof themomentmap.
In a ïŹrst step to establish new foundations of thermodynamics, Souriau [10] has deïŹned a
Gibbs canonical ensemble on a symplecticmanifoldM for a Lie group action onM. In classical
statistical mechanics, a state is given by the solution of Liouville equation on the phase space,
thepartitionfunction.Assymplecticmanifoldshaveacompletelycontinuousmeasure, invariantby
diffeomorphisms, theLiouvillemeasureλ, all statistical stateswill be theproduct of theLiouville
measurebythescalar functiongivenbythegeneralizedpartitionfunction eΊ(ÎČ)âăÎČ,U(Ο)ădeïŹnedby
the energyU (deïŹned in the dual of the Lie algebra of this dynamical group) and the geometric
temperature ÎČ, whereΊ is a normalizing constant such the mass of probability is equal to 1,
61
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik