Seite - 61 - in Differential Geometrical Theory of Statistics
Bild der Seite - 61 -
Text der Seite - 61 -
Entropy2016,18, 386
3.RevisitedSouriauSymplecticModelofStatisticalPhysics
In thisSection,wewill revisit theSouriaumodelof thermodynamicsbutwithmodernnotations,
replacingpersonalSouriauconventionsusedinhisbookof1970bymoreclassicalones.
In1970,Souriau introducedtheconceptofco-adjointactionofagrouponitsmomentumspace
(or“momentmap”:mapping inducedbysymplecticmanifoldsymmetries),basedontheorbitmethod
works, that allows todefinephysical observables like energy, heat andmomentumormoment as
puregeometrical objects (themomentmap takes its values ina spacedeterminedby thegroupof
symmetries: thedualspaceof itsLiealgebra). Themoment(um)mapisaconstantof themotionandis
associatedtosymplecticcohomology(assignmentofalgebraic invariants toa topological space that
arises fromthealgebraicdualizationof thehomologyconstruction). Souriau introducedthemoment
mapin1965ina lecturenotesatMarseilleUniversityandpublishedit in1966. Souriaugavetheformal
definitionanditsnamebasedonitsphysical interpretation in1967. Souriauthenstudied itsproperties
ofequivariance,andformulatedthecoadjointorbit theoreminhisbook in1970.However, inhisbook,
Souriaualsoobserved inChapter IV thatGibbsequilibriumstates arenot covariantbydynamical
groups (GalileoorPoincarégroups)andthenhedevelopedacovariantmodel thathecalled“Liegroup
thermodynamics”,where equilibriumsare indexedbya“geometric (Planck) temperature”, givenbya
vectorβ that lies in theLiealgebraof thedynamicalgroup. ForSouriau, all thedetails of classical
mechanicsappearasgeometricnecessities (e.g.,mass is themeasureof thesymplectic cohomologyof
theactionofaGalileogroup). BasedonthisnewcovariantmodelofthermodynamicGibbsequilibrium,
Souriauhas formulatedstatisticalmechanicsandthermodynamics in the frameworkofsymplectic
geometrybyuseofsymplecticmomentsanddistribution-tensorconcepts,givingageometricstatus
for temperature,heatandentropy.
There is a controversy about the name “momentum map” or “moment map”. Smale [92]
referred to thismapas the“angularmomentum”,whileSouriauused theFrenchword“moment”.
CushmanandDuistermaat [93]havesuggestedthat theproperEnglish translationofSouriau’sFrench
wordwas “momentum”which fit betterwith standard usage inmechanics. On the other hand,
GuilleminandSternberg [94]havevalidatedthenamegivenbySouriauandhaveused“moment” in
English. In thispaper,wewill see thatname“moment”givenbySouriauwasthemostappropriate
word. InhisChapter IVofhisbook[10], studyingstatisticalmechanics,Souriau[10]has ingeniously
observedthatmomentsof inertia inmechanicsareequivalent tomoments inprobability inhisnew
geometricmodelofstatisticalphysics.Wewill see that inSouriauLiegroupthermodynamicmodel,
thesestatisticalmomentswillbegivenbytheenergyandtheheatdefinedgeometricallybySouriau,
andwillbeassociatedwith“momentmap”indualLiealgebra.
ThisworkhasbeenextendedbyClaudeVallée [5,6]andGerydeSaxcé [4,8,95,96].Morerecently,
Kapranovhasalsogivenathermodynamical interpretationof themomentmapfor toricvarieties [97]
andPavlov, thermodynamics fromthedifferentialgeometrystandpoint [98].
Theconservationof themomentofaHamiltonianactionwascalledbySouriauthe“symplectic
or geometricNoether theorem”. Consideringphases spaceas symplecticmanifold, cotangentfiberof
configurationspacewithcanonical symplectic form, ifHamiltonianhasLiealgebra, thenthemoment
map is constant along the system integral curves. Noether theorem is obtained by considering
independentlyeachcomponentof themomentmap.
In a first step to establish new foundations of thermodynamics, Souriau [10] has defined a
Gibbs canonical ensemble on a symplecticmanifoldM for a Lie group action onM. In classical
statistical mechanics, a state is given by the solution of Liouville equation on the phase space,
thepartitionfunction.Assymplecticmanifoldshaveacompletelycontinuousmeasure, invariantby
diffeomorphisms, theLiouvillemeasureλ, all statistical stateswill be theproduct of theLiouville
measurebythescalar functiongivenbythegeneralizedpartitionfunction eΦ(β)−〈β,U(ξ)〉definedby
the energyU (defined in the dual of the Lie algebra of this dynamical group) and the geometric
temperature β, whereΦ is a normalizing constant such the mass of probability is equal to 1,
61
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik