Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 62 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 62 - in Differential Geometrical Theory of Statistics

Image of the Page - 62 -

Image of the Page - 62 - in Differential Geometrical Theory of Statistics

Text of the Page - 62 -

Entropy2016,18, 386 Ί(ÎČ) =−log M e−〈ÎČ,U(Ο)〉dλ [99]. Jean-Marie Souriau thengeneralizes theGibbs equilibriumstate to all symplecticmanifolds that have adynamical group. To ensure that all integrals thatwill be deïŹnedcouldconverge, the canonicalGibbs ensemble is the largest openproper subset (inLie algebra)where these integrals are convergent. This canonical Gibbs ensemble is convex. Thederivative ofΊ,Q = ∂Ω∂ÎČ (thermodynamic heat) is equal to themean value of the energyU. Theminus derivative of this generalizedheatQ,K=−∂Q∂ÎČ is symmetricandpositive (this isageometricheatcapacity). Entropy s is thendeïŹnedbyLegendre transformofΊ, s= 〈ÎČ,Q〉−Ω. If thisapproach isappliedfor thegroup of timetranslation, this is theclassical thermodynamics theory.However,Souriau [10]hasobserved that ifweapply this theory fornon-commutativegroup (GalileoorPoincarĂ©groups), the symmetryhasbeenbroken. ClassicalGibbs equilibriumstatesareno longer invariantby thisgroup. Thissymmetrybreakingprovides newequations,discoveredbySouriau[10]. We can read in his paper this prophetical sentence “This Lie group thermodynamics could be also of ïŹrst interest formathematics (Peut-ĂȘtre cetteThermodynamiquedes groupsdeLie a-t-elle un intĂ©rĂȘt mathĂ©matique)” [30]. Heexplains that for thedynamicGalileogroupwithonlyoneaxeof rotation, this thermodynamic theory is the theoryof centrifugewhere the temperaturevectordimension is equal to2 (sub-groupof invarianceof size2),usedtomake“uranium235”and“ribonucleicacid” [30]. Thephysicalmeaningof these twodimensions forvector-valuedtemperature is“thermicconduction” and“viscosity”. Souriausaidthat themodeluniïŹes“heatconduction”and“viscosity” (Fourierand Navierequations) in thesametheoryof irreversibleprocess. Souriauhasappliedthis theory indetail for relativistic idealgaswith thePoincarĂ©groupfor thedynamicalgroup. Before introducing theSouriauModelofLiegroupthermodynamics,wewillïŹrst remindreaders of theclassicalnotationofLiegrouptheory in theirapplicationtoLiegroupthermodynamics: ‱ Thecoadjoint representationofG is thecontragredientof theadjoint representation. Itassociates toeachg∈G the linear isomorphismAd∗g∈GL(g∗),whichsatisïŹes, foreachΟ∈ g∗ andX∈ g:〈 Ad∗g−1(Ο),X âŒȘ = 〈 Ο,Adg−1(X) âŒȘ (23) ‱ Theadjoint representationof theLiealgebrag is the linear representationofg into itselfwhich associates, to eachX∈ g, the linearmap adX ∈ gl(g). adTangent applicationofAdatneutral element eofG: ad=TeAd :TeG→End(TeG) X,Y∈TeG → adX(Y)= [X,Y] (24) ‱ Thecoadjointrepresentationof theLiealgebrag is thecontragredientof theadjointrepresentation. Itassociates, toeachX∈ g, the linearmap ad∗X∈ gl(g∗)whichsatisïŹes, foreachΟ∈ g∗ andX∈ g:〈 ad∗−X(Ο),Y âŒȘ = ă€ˆÎŸ,Ad−X(Y)〉 (25) Wecanillustrate forgroupofmatrices forG=GLn(K)withK=RorC. TeG=Mn(K), X∈Mn(K),g∈G Adg(X)= gXg−1 (26) X,Y∈Mn(K) adX(Y)=(TeAd)X(Y)=XY−YX=[X,Y] (27) Then, thecurve from e= Id= c(0) tangent toX= c(1) isgivenby c(t)= exp(tX)andtransform byAd:Îł(t)=Adexp(tX) adX(Y)=(TeAd)X(Y)= d dt Îł(t)Y ∣∣∣∣ t=0 = d dt exp(tX)Yexp(tX)−1 ∣∣∣∣ t=0 =XY−YX (28) 62
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics