Seite - 62 - in Differential Geometrical Theory of Statistics
Bild der Seite - 62 -
Text der Seite - 62 -
Entropy2016,18, 386
Ί(ÎČ) =âlog
M eâăÎČ,U(Ο)ădλ [99]. Jean-Marie Souriau thengeneralizes theGibbs equilibriumstate
to all symplecticmanifolds that have adynamical group. To ensure that all integrals thatwill be
deïŹnedcouldconverge, the canonicalGibbs ensemble is the largest openproper subset (inLie algebra)where
these integrals are convergent. This canonical Gibbs ensemble is convex. Thederivative ofΊ,Q = âΊâÎČ
(thermodynamic heat) is equal to themean value of the energyU. Theminus derivative of this
generalizedheatQ,K=ââQâÎČ is symmetricandpositive (this isageometricheatcapacity). Entropy s
is thendeïŹnedbyLegendre transformofΊ, s= ăÎČ,QăâΊ. If thisapproach isappliedfor thegroup
of timetranslation, this is theclassical thermodynamics theory.However,Souriau [10]hasobserved that
ifweapply this theory fornon-commutativegroup (GalileoorPoincarégroups), the symmetryhasbeenbroken.
ClassicalGibbs equilibriumstatesareno longer invariantby thisgroup. Thissymmetrybreakingprovides
newequations,discoveredbySouriau[10].
We can read in his paper this prophetical sentence âThis Lie group thermodynamics could be
also of ïŹrst interest formathematics (Peut-ĂȘtre cetteThermodynamiquedes groupsdeLie a-t-elle un intĂ©rĂȘt
mathĂ©matique)â [30]. Heexplains that for thedynamicGalileogroupwithonlyoneaxeof rotation,
this thermodynamic theory is the theoryof centrifugewhere the temperaturevectordimension is
equal to2 (sub-groupof invarianceof size2),usedtomakeâuranium235âandâribonucleicacidâ [30].
Thephysicalmeaningof these twodimensions forvector-valuedtemperature isâthermicconductionâ
andâviscosityâ. Souriausaidthat themodeluniïŹesâheatconductionâandâviscosityâ (Fourierand
Navierequations) in thesametheoryof irreversibleprocess. Souriauhasappliedthis theory indetail
for relativistic idealgaswith thePoincarégroupfor thedynamicalgroup.
Before introducing theSouriauModelofLiegroupthermodynamics,wewillïŹrst remindreaders
of theclassicalnotationofLiegrouptheory in theirapplicationtoLiegroupthermodynamics:
âą Thecoadjoint representationofG is thecontragredientof theadjoint representation. Itassociates
toeachgâG the linear isomorphismAdâgâGL(gâ),whichsatisïŹes, foreachΟâ gâ andXâ
g:â©
Adâgâ1(Ο),X âȘ
= â©
Ο,Adgâ1(X) âȘ
(23)
âą Theadjoint representationof theLiealgebrag is the linear representationofg into itselfwhich
associates, to eachXâ g, the linearmap adX â gl(g). adTangent applicationofAdatneutral
element eofG:
ad=TeAd :TeGâEnd(TeG)
X,YâTeG â adX(Y)= [X,Y] (24)
âą Thecoadjointrepresentationof theLiealgebrag is thecontragredientof theadjointrepresentation.
Itassociates, toeachXâ g, the linearmap adâXâ gl(gâ)whichsatisïŹes, foreachΟâ gâ andXâ
g:â©
adââX(Ο),Y âȘ
= ăΟ,AdâX(Y)ă (25)
Wecanillustrate forgroupofmatrices forG=GLn(K)withK=RorC.
TeG=Mn(K), XâMn(K),gâG Adg(X)= gXgâ1 (26)
X,YâMn(K) adX(Y)=(TeAd)X(Y)=XYâYX=[X,Y] (27)
Then, thecurve from e= Id= c(0) tangent toX= c(1) isgivenby c(t)= exp(tX)andtransform
byAd:Îł(t)=Adexp(tX)
adX(Y)=(TeAd)X(Y)= d
dt Îł(t)Y âŁâŁâŁâŁ
t=0 = d
dt exp(tX)Yexp(tX)â1 âŁâŁâŁâŁ
t=0 =XYâYX (28)
62
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik