Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 65 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 65 - in Differential Geometrical Theory of Statistics

Image of the Page - 65 -

Image of the Page - 65 - in Differential Geometrical Theory of Statistics

Text of the Page - 65 -

Entropy2016,18, 386 Figure6.BrokensymmetryongeometricheatQduetoadjointactionof thegroupontemperatureβas anelementof theLiealgebra. ForHamiltonian,actionsofaLiegrouponaconnectedsymplecticmanifold, theequivarianceof themomentmapwithrespect toanaffineactionof thegrouponthedualof itsLiealgebrahasbeen studiedbyMarleandLibermann[100]andLichnerowics [101,102]: Theorem 2 (Marle Theorem on Cocycles). Let G be a connected and simply connected Lie group, R :G→GL(E) bea linear representationofG inafinite-dimensionalvector spaceE,and r : g→ gl(E) be the associated linear representation of its Lie algebra g. For any one-cocycleΘ : g→E of the Lie algebra g for the linear representation r, there exists aunique one-cocycle θ :G→E of theLie groupG for the linear representationRsuch thatΘ(X) = Teθ(X(e)),whichhasΘ as associatedLie algebra one-cocycle. TheLie groupone-cocycleθ is aLiegroupone-coboundary if andonly if theLiealgebraone-cocycleΘ is aLiealgebra one-coboundary. LetGbeaLiegroupwhoseLiealgebra isg. Theskew-symmetricbilinear form Θ˜ong=TeG can beextendedintoacloseddifferential two-formonG, since the identityon Θ˜meansthat itsexterior differentialdΘ˜vanishes. Inotherwords, Θ˜ isa2-cocycle for therestrictionof thedeRhamcohomology ofG to left invariantdifferential forms. In theframeworkofLiegroupactiononasymplecticmanifold, equivarianceofmomentcouldbestudiedtoprovethat there isauniqueactiona(.,.)of theLiegroupG onthedualg∗of itsLiealgebraforwhichthemomentmap J isequivariant, thatmeansforeachx∈M: J ( Φg(x) ) = a(g, J(x))=Ad∗g(J(x))+θ(g) (41) whereΦ :G×M→M is anactionofLiegroupGondifferentiablemanifoldM, the fundamental fieldassociatedtoanelementXofLiealgebragofgroupG is thevectorsfieldXMonM: XM(x)= d dt Φexp(−tX) (x) ∣∣∣∣ t=0 (42) withΦg1 ( Φg2(x) ) =Φg1g2(x)andΦe(x)= x.Φ isHamiltonianonasymplecticmanifoldM, ifΦ is symplecticandif forallX∈ g, the fundamentalfieldXM isgloballyHamiltonian. Thecohomology classof thesymplecticcocycleθonlydependsontheHamiltonianactionΦ, andnoton J. InAppendixB,weobserve thatSouriauLiegroupthermodynamics iscompatiblewithBalian gauge theoryof thermodynamics [103], that isobtainedbysymplectization indimension2n+2of contactmanifold indimension2n+1.Allelementsof theSouriaugeometric temperaturevectorare multipliedbythesamegaugeparameter. WeconcludethissectionbythisBourbakistecitationof Jean-MarieSouriau[34]: 65
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics