Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 65 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 65 - in Differential Geometrical Theory of Statistics

Bild der Seite - 65 -

Bild der Seite - 65 - in Differential Geometrical Theory of Statistics

Text der Seite - 65 -

Entropy2016,18, 386 Figure6.BrokensymmetryongeometricheatQduetoadjointactionof thegroupontemperatureβas anelementof theLiealgebra. ForHamiltonian,actionsofaLiegrouponaconnectedsymplecticmanifold, theequivarianceof themomentmapwithrespect toanaffineactionof thegrouponthedualof itsLiealgebrahasbeen studiedbyMarleandLibermann[100]andLichnerowics [101,102]: Theorem 2 (Marle Theorem on Cocycles). Let G be a connected and simply connected Lie group, R :G→GL(E) bea linear representationofG inafinite-dimensionalvector spaceE,and r : g→ gl(E) be the associated linear representation of its Lie algebra g. For any one-cocycleΘ : g→E of the Lie algebra g for the linear representation r, there exists aunique one-cocycle θ :G→E of theLie groupG for the linear representationRsuch thatΘ(X) = Teθ(X(e)),whichhasΘ as associatedLie algebra one-cocycle. TheLie groupone-cocycleθ is aLiegroupone-coboundary if andonly if theLiealgebraone-cocycleΘ is aLiealgebra one-coboundary. LetGbeaLiegroupwhoseLiealgebra isg. Theskew-symmetricbilinear form Θ˜ong=TeG can beextendedintoacloseddifferential two-formonG, since the identityon Θ˜meansthat itsexterior differentialdΘ˜vanishes. Inotherwords, Θ˜ isa2-cocycle for therestrictionof thedeRhamcohomology ofG to left invariantdifferential forms. In theframeworkofLiegroupactiononasymplecticmanifold, equivarianceofmomentcouldbestudiedtoprovethat there isauniqueactiona(.,.)of theLiegroupG onthedualg∗of itsLiealgebraforwhichthemomentmap J isequivariant, thatmeansforeachx∈M: J ( Φg(x) ) = a(g, J(x))=Ad∗g(J(x))+θ(g) (41) whereΦ :G×M→M is anactionofLiegroupGondifferentiablemanifoldM, the fundamental fieldassociatedtoanelementXofLiealgebragofgroupG is thevectorsfieldXMonM: XM(x)= d dt Φexp(−tX) (x) ∣∣∣∣ t=0 (42) withΦg1 ( Φg2(x) ) =Φg1g2(x)andΦe(x)= x.Φ isHamiltonianonasymplecticmanifoldM, ifΦ is symplecticandif forallX∈ g, the fundamentalfieldXM isgloballyHamiltonian. Thecohomology classof thesymplecticcocycleθonlydependsontheHamiltonianactionΦ, andnoton J. InAppendixB,weobserve thatSouriauLiegroupthermodynamics iscompatiblewithBalian gauge theoryof thermodynamics [103], that isobtainedbysymplectization indimension2n+2of contactmanifold indimension2n+1.Allelementsof theSouriaugeometric temperaturevectorare multipliedbythesamegaugeparameter. WeconcludethissectionbythisBourbakistecitationof Jean-MarieSouriau[34]: 65
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics