Seite - 65 - in Differential Geometrical Theory of Statistics
Bild der Seite - 65 -
Text der Seite - 65 -
Entropy2016,18, 386
Figure6.BrokensymmetryongeometricheatQduetoadjointactionof thegroupontemperatureβas
anelementof theLiealgebra.
ForHamiltonian,actionsofaLiegrouponaconnectedsymplecticmanifold, theequivarianceof
themomentmapwithrespect toanaffineactionof thegrouponthedualof itsLiealgebrahasbeen
studiedbyMarleandLibermann[100]andLichnerowics [101,102]:
Theorem 2 (Marle Theorem on Cocycles). Let G be a connected and simply connected Lie group,
R :G→GL(E) bea linear representationofG inafinite-dimensionalvector spaceE,and r : g→ gl(E) be
the associated linear representation of its Lie algebra g. For any one-cocycleΘ : g→E of the Lie algebra g
for the linear representation r, there exists aunique one-cocycle θ :G→E of theLie groupG for the linear
representationRsuch thatΘ(X) = Teθ(X(e)),whichhasΘ as associatedLie algebra one-cocycle. TheLie
groupone-cocycleθ is aLiegroupone-coboundary if andonly if theLiealgebraone-cocycleΘ is aLiealgebra
one-coboundary.
LetGbeaLiegroupwhoseLiealgebra isg. Theskew-symmetricbilinear form Θ˜ong=TeG can
beextendedintoacloseddifferential two-formonG, since the identityon Θ˜meansthat itsexterior
differentialdΘ˜vanishes. Inotherwords, Θ˜ isa2-cocycle for therestrictionof thedeRhamcohomology
ofG to left invariantdifferential forms. In theframeworkofLiegroupactiononasymplecticmanifold,
equivarianceofmomentcouldbestudiedtoprovethat there isauniqueactiona(.,.)of theLiegroupG
onthedualg∗of itsLiealgebraforwhichthemomentmap J isequivariant, thatmeansforeachx∈M:
J (
Φg(x) )
= a(g, J(x))=Ad∗g(J(x))+θ(g) (41)
whereΦ :G×M→M is anactionofLiegroupGondifferentiablemanifoldM, the fundamental
fieldassociatedtoanelementXofLiealgebragofgroupG is thevectorsfieldXMonM:
XM(x)= d
dt Φexp(−tX) (x) ∣∣∣∣
t=0 (42)
withΦg1 (
Φg2(x) )
=Φg1g2(x)andΦe(x)= x.Φ isHamiltonianonasymplecticmanifoldM, ifΦ is
symplecticandif forallX∈ g, the fundamentalfieldXM isgloballyHamiltonian. Thecohomology
classof thesymplecticcocycleθonlydependsontheHamiltonianactionΦ, andnoton J.
InAppendixB,weobserve thatSouriauLiegroupthermodynamics iscompatiblewithBalian
gauge theoryof thermodynamics [103], that isobtainedbysymplectization indimension2n+2of
contactmanifold indimension2n+1.Allelementsof theSouriaugeometric temperaturevectorare
multipliedbythesamegaugeparameter.
WeconcludethissectionbythisBourbakistecitationof Jean-MarieSouriau[34]:
65
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik