Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 66 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 66 - in Differential Geometrical Theory of Statistics

Image of the Page - 66 -

Image of the Page - 66 - in Differential Geometrical Theory of Statistics

Text of the Page - 66 -

Entropy2016,18, 386 It is obvious that one can only define average values on objects belonging to a vector (or affine) space;Therefore—so this assertionmayseemBourbakist—thatwewill observeandmeasureaverage values only as quantity belonging to a set havingphysically an affine structure. It is clear that this structure is necessarilyunique—ifnot the averagevalueswouldnot bewell defined. (Il est évident que l’onnepeutdéfinirdevaleursmoyennesque surdes objets appartenant àunespace vectoriel (ouaffine);donc—sibourbakistequepuisse semblercetteaffirmation—que l’onn’observera etnemesureradevaleursmoyennesquesurdesgrandeursappartenantàunensemblepossédant physiquementune structureaffine. Il est clair que cette structure estnécessairementunique—sinon lesvaleursmoyennesne seraientpasbiendéfinies.). 4.TheSouriau-FisherMetricasGeometricHeatCapacityofLieGroupThermodynamics We observe that Souriau Riemannian metric, introduced with symplectic cocycle, is a generalizationof theFishermetric, thatwecall theSouriau-Fishermetric, thatpreserves theproperty tobedefinedasahessianof thepartitionfunction logarithmgβ=−∂ 2Φ ∂β2 = ∂2logψΩ ∂β2 as inclassical information geometry. We will establish the equality of two terms, between Souriau definition based on Lie group cocycleΘ and parameterized by “geometric heat” Q (element of dual Lie algebra)and“geometric temperature”β (elementofLiealgebra)andhessianofcharacteristic function Φ(β)=−logψΩ(β)withrespect to thevariableβ: gβ([β,Z1] , [β,Z2])= 〈Θ(Z1) , [β,Z2]〉+〈Q, [Z1, [β,Z2]]〉= ∂ 2logψΩ ∂β2 (43) If we differentiate this relation of Souriau theorem Q ( Adg(β) ) = Ad∗g(Q)+ θ(g), this relationoccurs: ∂Q ∂β (− [Z1,β] , .)= Θ˜(Z1, [β, .])+ 〈 Q,Ad.Z1([β, .]) 〉 = Θ˜β(Z1, [β, .]) (44) − ∂Q ∂β ([Z1,β] ,Z2.)= Θ˜(Z1, [β,Z2])+ 〈 Q,Ad.Z1([β,Z2]) 〉 = Θ˜β(Z1, [β,Z2]) (45) ⇒−∂Q ∂β = gβ([β,Z1] , [β,Z2]) (46) As the entropy is defined by the Legendre transform of the characteristic function, this Souriau-Fishermetric is also equal to the inverse of the hessian of “geometric entropy” s(Q) withrespect to thevariableQ: ∂2s(Q) ∂Q2 For themaximumentropydensity (Gibbsdensity), the followingthree termscoincide: ∂2logψΩ ∂β2 thatdescribestheconvexityofthelog-likelihoodfunction, I(β)=−E [ ∂2logpβ(ξ) ∂β2 ] theFishermetricthat describesthecovarianceofthelog-likelihoodgradient,whereas I(β)=E [ (ξ−Q)(ξ−Q)T ] =Var(ξ) thatdescribes thecovarianceof theobservables. Wecanalsoobserve that theFishermetric I(β) =−∂Q ∂β is exactly theSouriaumetricdefined throughsymplecticcocycle: I(β)= Θ˜β(Z1, [β,Z2])= gβ([β,Z1] , [β,Z2]) (47) TheFishermetric I(β)=−∂ 2Φ(β) ∂β2 =−∂Q ∂β hasbeenconsideredbySouriauasageneralizationof “heat capacity”. Souriaucalled itK the“geometric capacity”. 66
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics