Seite - 66 - in Differential Geometrical Theory of Statistics
Bild der Seite - 66 -
Text der Seite - 66 -
Entropy2016,18, 386
It is obvious that one can only define average values on objects belonging to a vector (or affine)
space;Therefore—so this assertionmayseemBourbakist—thatwewill observeandmeasureaverage
values only as quantity belonging to a set havingphysically an affine structure. It is clear that
this structure is necessarilyunique—ifnot the averagevalueswouldnot bewell defined. (Il est
évident que l’onnepeutdéfinirdevaleursmoyennesque surdes objets appartenant àunespace
vectoriel (ouaffine);donc—sibourbakistequepuisse semblercetteaffirmation—que l’onn’observera
etnemesureradevaleursmoyennesquesurdesgrandeursappartenantàunensemblepossédant
physiquementune structureaffine. Il est clair que cette structure estnécessairementunique—sinon
lesvaleursmoyennesne seraientpasbiendéfinies.).
4.TheSouriau-FisherMetricasGeometricHeatCapacityofLieGroupThermodynamics
We observe that Souriau Riemannian metric, introduced with symplectic cocycle, is a
generalizationof theFishermetric, thatwecall theSouriau-Fishermetric, thatpreserves theproperty
tobedefinedasahessianof thepartitionfunction logarithmgβ=−∂ 2Φ
∂β2 = ∂2logψΩ
∂β2 as inclassical
information geometry. We will establish the equality of two terms, between Souriau definition
based on Lie group cocycleΘ and parameterized by “geometric heat” Q (element of dual Lie
algebra)and“geometric temperature”β (elementofLiealgebra)andhessianofcharacteristic function
Φ(β)=−logψΩ(β)withrespect to thevariableβ:
gβ([β,Z1] , [β,Z2])= 〈Θ(Z1) , [β,Z2]〉+〈Q, [Z1, [β,Z2]]〉= ∂ 2logψΩ
∂β2 (43)
If we differentiate this relation of Souriau theorem Q (
Adg(β) )
= Ad∗g(Q)+ θ(g), this
relationoccurs:
∂Q
∂β (− [Z1,β] , .)= Θ˜(Z1, [β, .])+ 〈
Q,Ad.Z1([β, .]) 〉
= Θ˜β(Z1, [β, .]) (44)
− ∂Q
∂β ([Z1,β] ,Z2.)= Θ˜(Z1, [β,Z2])+ 〈
Q,Ad.Z1([β,Z2]) 〉
= Θ˜β(Z1, [β,Z2]) (45)
⇒−∂Q
∂β = gβ([β,Z1] , [β,Z2]) (46)
As the entropy is defined by the Legendre transform of the characteristic function,
this Souriau-Fishermetric is also equal to the inverse of the hessian of “geometric entropy” s(Q)
withrespect to thevariableQ: ∂2s(Q)
∂Q2
For themaximumentropydensity (Gibbsdensity), the followingthree termscoincide: ∂2logψΩ
∂β2
thatdescribestheconvexityofthelog-likelihoodfunction, I(β)=−E [
∂2logpβ(ξ)
∂β2 ]
theFishermetricthat
describesthecovarianceofthelog-likelihoodgradient,whereas I(β)=E [
(ξ−Q)(ξ−Q)T ]
=Var(ξ)
thatdescribes thecovarianceof theobservables.
Wecanalsoobserve that theFishermetric I(β) =−∂Q
∂β is exactly theSouriaumetricdefined
throughsymplecticcocycle:
I(β)= Θ˜β(Z1, [β,Z2])= gβ([β,Z1] , [β,Z2]) (47)
TheFishermetric I(β)=−∂ 2Φ(β)
∂β2 =−∂Q
∂β hasbeenconsideredbySouriauasageneralizationof
“heat capacity”. Souriaucalled itK the“geometric capacity”.
66
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik