Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 67 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 67 - in Differential Geometrical Theory of Statistics

Image of the Page - 67 -

Image of the Page - 67 - in Differential Geometrical Theory of Statistics

Text of the Page - 67 -

Entropy2016,18, 386 Figure7.Fourierheatequation inseminalmanuscriptof JosephFourier [88]. For β = 1 kT , K =−∂Q ∂β =−∂Q ∂T ( ∂(1/kT) ∂T )−1 = kT2 ∂Q ∂T linking the geometric capacity to calorificcapacity, thenFishermetriccanbe introducedinFourierheatequation(seeFigure7): ∂T ∂t = κ C ·DΔTwith ∂Q ∂T =C ·D⇒ ∂β −1 ∂t = κ [( β2/k ) · IFisher(β) ]−1 Δβ−1 (48) Wecanalsoobserve thatQ is relatedto themean,andK to thevarianceofU: K= I(β)=−∂Q ∂β =var(U)= M U(ξ)2 ·pβ(ξ)dω− ( M U(ξ) ·pβ(ξ)dω )2 (49) Weobserve that theentropy s isunchanged,andΦ is changedbutwith lineardependence toβ, with theconsequence thatFisherSouriaumetric is invariant: s [ Q ( Adg(β) )] = s(Q(β))and I ( Adg(β) ) =−∂ 2(Φ−〈θ(g−1) ,β〉) ∂β2 =−∂ 2Φ ∂β2 = I(β) (50) Wehaveobservedthat theconceptof“heatcapacity” is important in theSouriaumodelbecause itgivesageometricmeaningto itsdefinition. Thenotionof“heatcapacity”hasbeengeneralizedby PierreDuheminhisgeneralequationsof thermodynamics. Souriau[34]proposedtodefinea thermometer (θε μóσ)deviceprinciple thatcouldmeasure this geometric temperatureusing“relative idealgas thermometer”basedonatheoryofdynamicalgroup thermometryandhasalsorecoveredthe (geometric)Laplacebarometric law 5. Euler-PoincaréEquationsandVariationalPrincipleofSouriauLieGroupThermodynamics WhenaLiealgebraacts locally transitivelyontheconfigurationspaceofaLagrangianmechanical system,HenriPoincaréprovedthat theEuler-Lagrangeequationsareequivalent toanewsystemof differentialequationsdefinedontheproductof theconfigurationspacewiththeLiealgebra.Marlehas writtenabout theEuler-Poincaréequations [104],underan intrinsic form,withoutanyreference toa particular systemof local coordinates,proving that theycanbeconvenientlyexpressed in termsof theLegendreandmomentmapsof the lift to thecotangentbundleof theLiealgebraactionon the configurationspace. TheLagrangian isasmoothrealvaluedfunctionLdefinedonthe tangentbundle 67
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics