Page - 67 - in Differential Geometrical Theory of Statistics
Image of the Page - 67 -
Text of the Page - 67 -
Entropy2016,18, 386
Figure7.Fourierheatequation inseminalmanuscriptof JosephFourier [88].
For β = 1
kT , K =−∂Q
∂β =−∂Q
∂T (
∂(1/kT)
∂T )−1
= kT2 ∂Q
∂T linking the geometric capacity to
calorificcapacity, thenFishermetriccanbe introducedinFourierheatequation(seeFigure7):
∂T
∂t = κ
C ·DΔTwith ∂Q
∂T =C ·D⇒ ∂β −1
∂t = κ [(
β2/k )
· IFisher(β) ]−1 Δβ−1 (48)
Wecanalsoobserve thatQ is relatedto themean,andK to thevarianceofU:
K= I(β)=−∂Q
∂β =var(U)=
M U(ξ)2 ·pβ(ξ)dω− (
M U(ξ) ·pβ(ξ)dω )2
(49)
Weobserve that theentropy s isunchanged,andΦ is changedbutwith lineardependence toβ,
with theconsequence thatFisherSouriaumetric is invariant:
s [
Q (
Adg(β) )]
= s(Q(β))and I (
Adg(β) ) =−∂ 2(Φ−〈θ(g−1) ,β〉)
∂β2 =−∂ 2Φ
∂β2 = I(β) (50)
Wehaveobservedthat theconceptof“heatcapacity” is important in theSouriaumodelbecause
itgivesageometricmeaningto itsdefinition. Thenotionof“heatcapacity”hasbeengeneralizedby
PierreDuheminhisgeneralequationsof thermodynamics.
Souriau[34]proposedtodefinea thermometer (θε μóσ)deviceprinciple thatcouldmeasure this
geometric temperatureusing“relative idealgas thermometer”basedonatheoryofdynamicalgroup
thermometryandhasalsorecoveredthe (geometric)Laplacebarometric law
5. Euler-PoincaréEquationsandVariationalPrincipleofSouriauLieGroupThermodynamics
WhenaLiealgebraacts locally transitivelyontheconfigurationspaceofaLagrangianmechanical
system,HenriPoincaréprovedthat theEuler-Lagrangeequationsareequivalent toanewsystemof
differentialequationsdefinedontheproductof theconfigurationspacewiththeLiealgebra.Marlehas
writtenabout theEuler-Poincaréequations [104],underan intrinsic form,withoutanyreference toa
particular systemof local coordinates,proving that theycanbeconvenientlyexpressed in termsof
theLegendreandmomentmapsof the lift to thecotangentbundleof theLiealgebraactionon the
configurationspace. TheLagrangian isasmoothrealvaluedfunctionLdefinedonthe tangentbundle
67
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik