Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 67 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 67 - in Differential Geometrical Theory of Statistics

Bild der Seite - 67 -

Bild der Seite - 67 - in Differential Geometrical Theory of Statistics

Text der Seite - 67 -

Entropy2016,18, 386 Figure7.Fourierheatequation inseminalmanuscriptof JosephFourier [88]. For β = 1 kT , K =−∂Q ∂β =−∂Q ∂T ( ∂(1/kT) ∂T )−1 = kT2 ∂Q ∂T linking the geometric capacity to calorificcapacity, thenFishermetriccanbe introducedinFourierheatequation(seeFigure7): ∂T ∂t = κ C ·DΔTwith ∂Q ∂T =C ·D⇒ ∂β −1 ∂t = κ [( β2/k ) · IFisher(β) ]−1 Δβ−1 (48) Wecanalsoobserve thatQ is relatedto themean,andK to thevarianceofU: K= I(β)=−∂Q ∂β =var(U)= M U(ξ)2 ·pβ(ξ)dω− ( M U(ξ) ·pβ(ξ)dω )2 (49) Weobserve that theentropy s isunchanged,andΦ is changedbutwith lineardependence toβ, with theconsequence thatFisherSouriaumetric is invariant: s [ Q ( Adg(β) )] = s(Q(β))and I ( Adg(β) ) =−∂ 2(Φ−〈θ(g−1) ,β〉) ∂β2 =−∂ 2Φ ∂β2 = I(β) (50) Wehaveobservedthat theconceptof“heatcapacity” is important in theSouriaumodelbecause itgivesageometricmeaningto itsdefinition. Thenotionof“heatcapacity”hasbeengeneralizedby PierreDuheminhisgeneralequationsof thermodynamics. Souriau[34]proposedtodefinea thermometer (θε μóσ)deviceprinciple thatcouldmeasure this geometric temperatureusing“relative idealgas thermometer”basedonatheoryofdynamicalgroup thermometryandhasalsorecoveredthe (geometric)Laplacebarometric law 5. Euler-PoincaréEquationsandVariationalPrincipleofSouriauLieGroupThermodynamics WhenaLiealgebraacts locally transitivelyontheconfigurationspaceofaLagrangianmechanical system,HenriPoincaréprovedthat theEuler-Lagrangeequationsareequivalent toanewsystemof differentialequationsdefinedontheproductof theconfigurationspacewiththeLiealgebra.Marlehas writtenabout theEuler-Poincaréequations [104],underan intrinsic form,withoutanyreference toa particular systemof local coordinates,proving that theycanbeconvenientlyexpressed in termsof theLegendreandmomentmapsof the lift to thecotangentbundleof theLiealgebraactionon the configurationspace. TheLagrangian isasmoothrealvaluedfunctionLdefinedonthe tangentbundle 67
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics