Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 69 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 69 - in Differential Geometrical Theory of Statistics

Image of the Page - 69 -

Image of the Page - 69 - in Differential Geometrical Theory of Statistics

Text of the Page - 69 -

Entropy2016,18, 386 Back to Koszul model of information geometry, we can then deduce an equivalent of the Euler-Poincaréequationforstatisticalmodels dx∗ dt = ad∗xx∗ and ⎧⎨⎩ Φ ∗(x∗)= 〈x,x∗〉−Φ(x) x= ∂Φ ∗(x∗) ∂x ∈Ω , x∗= ∂Φ(x)∂x ∈Ω∗ (60) We can use this Euler-Poincaré equation to deduce an associated equation on entropy: ds dt = 〈 dβ dt ,Q 〉 + 〈 β,ad∗βQ 〉 − dΦ dt that reduces to ds dt = 〈 dβ dt ,Q 〉 − dΦ dt (61) dueto 〈ξ,adVX〉=− 〈 ad∗Vξ,X 〉⇒〈β,ad∗βQ〉= 〈Q,adββ〉=0. Withthesenewequationofthermodynamics dQ dt = ad∗βQand d dt (Ad∗gQ)=0,wecanobservethat thenewimportantnotion is relatedtoco-adjointorbits, thatareassociatedtoasymplecticmanifoldby SouriauwithKKS2-form. We will then define the Poincaré-Cartan integral invariant for Lie group thermodynamics. Classically inmechanics, thePfaffianformω= p ·dq−H ·dt is relatedtoPoincaré-Cartan integral invariant [107].Dedeckerhasobserved,basedontherelation[108]: ω= ∂ .qL ·dq− ( ∂ .qL · . q−L ) ·dt=L ·dt+∂ .qL with = dq− . q ·dt (62) that theproperty thatamongall formsχ≡ L ·dtmod the formω= p ·dq−H ·dt is theonlyone satisfyingdχ≡0mod , isaparticularcaseofmoregeneralLepagecongruence. AnalogiesbetweengeometricmechanicsandgeometricLiegroupthermodynamics,provides the followingsimilaritiesof structures: { . q↔ β p↔Q , ⎧⎪⎪⎨⎪⎪⎩ L( . q)↔Φ(β) H(p)↔ s(Q) H= p · .q−L↔ s= 〈Q,β〉−Φ and ⎧⎪⎪⎪⎨⎪⎪⎪⎩ . q= dq dt = ∂H ∂p ↔ β= ∂s ∂Q p= ∂L ∂ . q ↔Q= ∂Φ ∂β (63) WecanthenconsiderasimilarPoincaré-Cartan-SouriauPfaffian form: ω= p ·dq−H ·dt↔ω= 〈Q,(β ·dt)〉−s ·dt=(〈Q,β〉−s) ·dt=Φ(β) ·dt (64) ThisanalogyprovidesanassociatedPoincaré-Cartan-Souriau integral invariant. Poincaré-Cartan integral invariant Ca p ·dq−H.dt= Cb p ·dq−H ·dt isgivenforSouriauthermodynamicsby: Ca Φ(β) ·dt= Cb Φ(β) ·dt (65) We can then deduce an Euler-Poincaré-Souriau variational principle for thermodynamics: The variationalprincipleholdson g, forvariations δβ= . η+[β,η],whereη(t) is anarbitrarypath that vanishesat theendpoints,η(a)=η(b)=0: 69
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics