Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 69 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 69 - in Differential Geometrical Theory of Statistics

Bild der Seite - 69 -

Bild der Seite - 69 - in Differential Geometrical Theory of Statistics

Text der Seite - 69 -

Entropy2016,18, 386 Back to Koszul model of information geometry, we can then deduce an equivalent of the Euler-Poincaréequationforstatisticalmodels dx∗ dt = ad∗xx∗ and ⎧⎨⎩ Φ ∗(x∗)= 〈x,x∗〉−Φ(x) x= ∂Φ ∗(x∗) ∂x ∈Ω , x∗= ∂Φ(x)∂x ∈Ω∗ (60) We can use this Euler-Poincaré equation to deduce an associated equation on entropy: ds dt = 〈 dβ dt ,Q 〉 + 〈 β,ad∗βQ 〉 − dΦ dt that reduces to ds dt = 〈 dβ dt ,Q 〉 − dΦ dt (61) dueto 〈ξ,adVX〉=− 〈 ad∗Vξ,X 〉⇒〈β,ad∗βQ〉= 〈Q,adββ〉=0. Withthesenewequationofthermodynamics dQ dt = ad∗βQand d dt (Ad∗gQ)=0,wecanobservethat thenewimportantnotion is relatedtoco-adjointorbits, thatareassociatedtoasymplecticmanifoldby SouriauwithKKS2-form. We will then define the Poincaré-Cartan integral invariant for Lie group thermodynamics. Classically inmechanics, thePfaffianformω= p ·dq−H ·dt is relatedtoPoincaré-Cartan integral invariant [107].Dedeckerhasobserved,basedontherelation[108]: ω= ∂ .qL ·dq− ( ∂ .qL · . q−L ) ·dt=L ·dt+∂ .qL with = dq− . q ·dt (62) that theproperty thatamongall formsχ≡ L ·dtmod the formω= p ·dq−H ·dt is theonlyone satisfyingdχ≡0mod , isaparticularcaseofmoregeneralLepagecongruence. AnalogiesbetweengeometricmechanicsandgeometricLiegroupthermodynamics,provides the followingsimilaritiesof structures: { . q↔ β p↔Q , ⎧⎪⎪⎨⎪⎪⎩ L( . q)↔Φ(β) H(p)↔ s(Q) H= p · .q−L↔ s= 〈Q,β〉−Φ and ⎧⎪⎪⎪⎨⎪⎪⎪⎩ . q= dq dt = ∂H ∂p ↔ β= ∂s ∂Q p= ∂L ∂ . q ↔Q= ∂Φ ∂β (63) WecanthenconsiderasimilarPoincaré-Cartan-SouriauPfaffian form: ω= p ·dq−H ·dt↔ω= 〈Q,(β ·dt)〉−s ·dt=(〈Q,β〉−s) ·dt=Φ(β) ·dt (64) ThisanalogyprovidesanassociatedPoincaré-Cartan-Souriau integral invariant. Poincaré-Cartan integral invariant Ca p ·dq−H.dt= Cb p ·dq−H ·dt isgivenforSouriauthermodynamicsby: Ca Φ(β) ·dt= Cb Φ(β) ·dt (65) We can then deduce an Euler-Poincaré-Souriau variational principle for thermodynamics: The variationalprincipleholdson g, forvariations δβ= . η+[β,η],whereη(t) is anarbitrarypath that vanishesat theendpoints,η(a)=η(b)=0: 69
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics