Seite - 69 - in Differential Geometrical Theory of Statistics
Bild der Seite - 69 -
Text der Seite - 69 -
Entropy2016,18, 386
Back to Koszul model of information geometry, we can then deduce an equivalent of the
Euler-Poincaréequationforstatisticalmodels
dx∗
dt = ad∗xx∗ and ⎧⎨⎩ Φ ∗(x∗)= 〈x,x∗〉−Φ(x)
x= ∂Φ ∗(x∗)
∂x ∈Ω , x∗= ∂Φ(x)∂x ∈Ω∗ (60)
We can use this Euler-Poincaré equation to deduce an associated equation on entropy:
ds
dt = 〈
dβ
dt ,Q 〉
+ 〈
β,ad∗βQ 〉
− dΦ
dt that reduces to
ds
dt = 〈
dβ
dt ,Q 〉
− dΦ
dt (61)
dueto 〈ξ,adVX〉=− 〈 ad∗Vξ,X 〉⇒〈β,ad∗βQ〉= 〈Q,adββ〉=0.
Withthesenewequationofthermodynamics dQ
dt = ad∗βQand d
dt (Ad∗gQ)=0,wecanobservethat
thenewimportantnotion is relatedtoco-adjointorbits, thatareassociatedtoasymplecticmanifoldby
SouriauwithKKS2-form.
We will then define the Poincaré-Cartan integral invariant for Lie group thermodynamics.
Classically inmechanics, thePfaffianformω= p ·dq−H ·dt is relatedtoPoincaré-Cartan integral
invariant [107].Dedeckerhasobserved,basedontherelation[108]:
ω= ∂ .qL ·dq− (
∂ .qL · .
q−L )
·dt=L ·dt+∂ .qL with = dq− .
q ·dt (62)
that theproperty thatamongall formsχ≡ L ·dtmod the formω= p ·dq−H ·dt is theonlyone
satisfyingdχ≡0mod , isaparticularcaseofmoregeneralLepagecongruence.
AnalogiesbetweengeometricmechanicsandgeometricLiegroupthermodynamics,provides the
followingsimilaritiesof structures:
{ .
q↔ β
p↔Q , ⎧⎪⎪⎨⎪⎪⎩ L( .
q)↔Φ(β)
H(p)↔ s(Q)
H= p · .q−L↔ s= 〈Q,β〉−Φ
and ⎧⎪⎪⎪⎨⎪⎪⎪⎩ .
q= dq
dt = ∂H
∂p ↔ β= ∂s
∂Q
p= ∂L
∂ .
q ↔Q= ∂Φ
∂β (63)
WecanthenconsiderasimilarPoincaré-Cartan-SouriauPfaffian form:
ω= p ·dq−H ·dt↔ω= 〈Q,(β ·dt)〉−s ·dt=(〈Q,β〉−s) ·dt=Φ(β) ·dt (64)
ThisanalogyprovidesanassociatedPoincaré-Cartan-Souriau integral invariant. Poincaré-Cartan
integral invariant
Ca p ·dq−H.dt=
Cb p ·dq−H ·dt isgivenforSouriauthermodynamicsby:
Ca Φ(β) ·dt=
Cb Φ(β) ·dt (65)
We can then deduce an Euler-Poincaré-Souriau variational principle for thermodynamics: The
variationalprincipleholdson g, forvariations δβ= .
η+[β,η],whereη(t) is anarbitrarypath that
vanishesat theendpoints,η(a)=η(b)=0:
69
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik