Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 70 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 70 - in Differential Geometrical Theory of Statistics

Image of the Page - 70 -

Image of the Page - 70 - in Differential Geometrical Theory of Statistics

Text of the Page - 70 -

Entropy2016,18, 386 δ t1 t0 Φ(β(t)) ·dt=0 (66) 6. SouriauAffineRepresentationofLieGroupandLieAlgebraandComparisonwiththeKoszul AffineRepresentation Thisaffine representationofLiegroup/algebrausedbySouriauhasbeen intensively studied byMarle [7,100,109,110]. Souriaucalledthemechanicsdeducedfromthismodel, “affinemechanics”. Wewill explainaffinerepresentationsandassociatednotionsascocycles,Souriaumomentmapand cocycles, equivarianceofSouriaumomentmap,actionofLiegrouponasymplecticmanifoldanddual spacesoffinite-dimensionalLiealgebras.Wehaveobservedthat these toolshavebeendevelopedin parallelbyJean-LouisKoszul.Wewill establishclose linksandsynthetize thecomparisons ina table ofbothapproaches. 6.1.AffineRepresentationsandCocycles SouriaumodelofLiegroupthermodynamics is linkedwithaffinerepresentationofLiegroup andLiealgebra.Wewillgive in the followingmainelementsof thisaffinerepresentation. LetGbeaLiegroupandEafinite-dimensionalvectorspace.Amap A :G→Af f(E) canalways bewrittenas: A(g)(x)=R(g)(x)+θ(g)withg∈G,x∈E (67) where the maps R :G→GL(E) and θ :G→E are determined by A. The map A is an affine representationofG inE. Themap θ :G→E isaone-cocycleofGwithvalues inE, for the linearrepresentationR; itmeans thatθ isasmoothmapwhichsatisfies, forallg,h∈G: θ(gh)=R(g)(θ(h))+θ(g) (68) The linearrepresentationR is calledthe linearpartof theaffinerepresentationA, andθ is calledthe one-cocycleofGassociatedto theaffinerepresentationA.Aone-coboundaryofGwithvalues inE, for the linearrepresentationR, isamap θ :G→E whichcanbeexpressedas: θ(g)=R(g)(c)−c , g∈G (69) wherec isafixedelement inEandthenthereexistanelement c∈Esuchthat, forallg∈Gandx∈E: A(g)(x)=R(g)(x+c)−c (70) Let gbe aLie algebra andE afinite-dimensional vector space. A linearmap a : g→ af f(E) alwayscanbewrittenas: a(X)(x)= r(X)(x)+Θ(X)withX∈ g,x∈E (71) where the linearmaps r : g→ gl(E) and Θ : g→Eare determined by a. Themap a is an affine representationofG inE.The linearmapΘ : g→E isaone-cocycleofGwithvalues inE, for the linear representation r; itmeans thatΘ satisfies, forallX,Y∈ g: Θ([X,Y])= r(X)(Θ(Y))−r(Y)(Θ(X)) (72) Θ is calledtheone-cocycleofgassociatedto theaffinerepresentationa.Aone-coboundaryofgwith values inE, for the linear representation r, is a linearmap Θ : g→E which can be expressed as: Θ(X)= r(X)(c) , X∈ gwhere c isafixedelement inE., andthenthereexistanelement c∈E such that, forallX∈ gandx∈E: a(X)(x)= r(X)(x+c) 70
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics