Page - 70 - in Differential Geometrical Theory of Statistics
Image of the Page - 70 -
Text of the Page - 70 -
Entropy2016,18, 386
δ t1
t0 Ό(β(t)) ¡dt=0 (66)
6. SouriauAfďŹneRepresentationofLieGroupandLieAlgebraandComparisonwiththeKoszul
AfďŹneRepresentation
ThisafďŹne representationofLiegroup/algebrausedbySouriauhasbeen intensively studied
byMarle [7,100,109,110]. Souriaucalledthemechanicsdeducedfromthismodel, âafďŹnemechanicsâ.
Wewill explainafďŹnerepresentationsandassociatednotionsascocycles,Souriaumomentmapand
cocycles, equivarianceofSouriaumomentmap,actionofLiegrouponasymplecticmanifoldanddual
spacesofďŹnite-dimensionalLiealgebras.Wehaveobservedthat these toolshavebeendevelopedin
parallelbyJean-LouisKoszul.Wewill establishclose linksandsynthetize thecomparisons ina table
ofbothapproaches.
6.1.AfďŹneRepresentationsandCocycles
SouriaumodelofLiegroupthermodynamics is linkedwithafďŹnerepresentationofLiegroup
andLiealgebra.Wewillgive in the followingmainelementsof thisafďŹnerepresentation.
LetGbeaLiegroupandEaďŹnite-dimensionalvectorspace.Amap A :GâAf f(E) canalways
bewrittenas:
A(g)(x)=R(g)(x)+θ(g)withgâG,xâE (67)
where the maps R :GâGL(E) and θ :GâE are determined by A. The map A is an afďŹne
representationofG inE.
Themap θ :GâE isaone-cocycleofGwithvalues inE, for the linearrepresentationR; itmeans
thatθ isasmoothmapwhichsatisďŹes, forallg,hâG:
θ(gh)=R(g)(θ(h))+θ(g) (68)
The linearrepresentationR is calledthe linearpartof theafďŹnerepresentationA, andθ is calledthe
one-cocycleofGassociatedto theafďŹnerepresentationA.Aone-coboundaryofGwithvalues inE,
for the linearrepresentationR, isamap θ :GâE whichcanbeexpressedas:
θ(g)=R(g)(c)âc , gâG (69)
wherec isaďŹxedelement inEandthenthereexistanelement câEsuchthat, forallgâGandxâE:
A(g)(x)=R(g)(x+c)âc (70)
Let gbe aLie algebra andE aďŹnite-dimensional vector space. A linearmap a : gâ af f(E)
alwayscanbewrittenas:
a(X)(x)= r(X)(x)+Î(X)withXâ g,xâE (71)
where the linearmaps r : gâ gl(E) and Î : gâEare determined by a. Themap a is an afďŹne
representationofG inE.The linearmapÎ : gâE isaone-cocycleofGwithvalues inE, for the linear
representation r; itmeans thatÎ satisďŹes, forallX,Yâ g:
Î([X,Y])= r(X)(Î(Y))âr(Y)(Î(X)) (72)
Î is calledtheone-cocycleofgassociatedto theafďŹnerepresentationa.Aone-coboundaryofgwith
values inE, for the linear representation r, is a linearmap Î : gâE which can be expressed as:
Î(X)= r(X)(c) , Xâ gwhere c isaďŹxedelement inE., andthenthereexistanelement câE such
that, forallXâ gandxâE:
a(X)(x)= r(X)(x+c)
70
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrĂŠdĂŠric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik