Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 70 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 70 - in Differential Geometrical Theory of Statistics

Bild der Seite - 70 -

Bild der Seite - 70 - in Differential Geometrical Theory of Statistics

Text der Seite - 70 -

Entropy2016,18, 386 δ t1 t0 Φ(β(t)) ·dt=0 (66) 6. SouriauAffineRepresentationofLieGroupandLieAlgebraandComparisonwiththeKoszul AffineRepresentation Thisaffine representationofLiegroup/algebrausedbySouriauhasbeen intensively studied byMarle [7,100,109,110]. Souriaucalledthemechanicsdeducedfromthismodel, “affinemechanics”. Wewill explainaffinerepresentationsandassociatednotionsascocycles,Souriaumomentmapand cocycles, equivarianceofSouriaumomentmap,actionofLiegrouponasymplecticmanifoldanddual spacesoffinite-dimensionalLiealgebras.Wehaveobservedthat these toolshavebeendevelopedin parallelbyJean-LouisKoszul.Wewill establishclose linksandsynthetize thecomparisons ina table ofbothapproaches. 6.1.AffineRepresentationsandCocycles SouriaumodelofLiegroupthermodynamics is linkedwithaffinerepresentationofLiegroup andLiealgebra.Wewillgive in the followingmainelementsof thisaffinerepresentation. LetGbeaLiegroupandEafinite-dimensionalvectorspace.Amap A :G→Af f(E) canalways bewrittenas: A(g)(x)=R(g)(x)+θ(g)withg∈G,x∈E (67) where the maps R :G→GL(E) and θ :G→E are determined by A. The map A is an affine representationofG inE. Themap θ :G→E isaone-cocycleofGwithvalues inE, for the linearrepresentationR; itmeans thatθ isasmoothmapwhichsatisfies, forallg,h∈G: θ(gh)=R(g)(θ(h))+θ(g) (68) The linearrepresentationR is calledthe linearpartof theaffinerepresentationA, andθ is calledthe one-cocycleofGassociatedto theaffinerepresentationA.Aone-coboundaryofGwithvalues inE, for the linearrepresentationR, isamap θ :G→E whichcanbeexpressedas: θ(g)=R(g)(c)−c , g∈G (69) wherec isafixedelement inEandthenthereexistanelement c∈Esuchthat, forallg∈Gandx∈E: A(g)(x)=R(g)(x+c)−c (70) Let gbe aLie algebra andE afinite-dimensional vector space. A linearmap a : g→ af f(E) alwayscanbewrittenas: a(X)(x)= r(X)(x)+Θ(X)withX∈ g,x∈E (71) where the linearmaps r : g→ gl(E) and Θ : g→Eare determined by a. Themap a is an affine representationofG inE.The linearmapΘ : g→E isaone-cocycleofGwithvalues inE, for the linear representation r; itmeans thatΘ satisfies, forallX,Y∈ g: Θ([X,Y])= r(X)(Θ(Y))−r(Y)(Θ(X)) (72) Θ is calledtheone-cocycleofgassociatedto theaffinerepresentationa.Aone-coboundaryofgwith values inE, for the linear representation r, is a linearmap Θ : g→E which can be expressed as: Θ(X)= r(X)(c) , X∈ gwhere c isafixedelement inE., andthenthereexistanelement c∈E such that, forallX∈ gandx∈E: a(X)(x)= r(X)(x+c) 70
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics