Seite - 70 - in Differential Geometrical Theory of Statistics
Bild der Seite - 70 -
Text der Seite - 70 -
Entropy2016,18, 386
δ t1
t0 Φ(β(t)) ·dt=0 (66)
6. SouriauAffineRepresentationofLieGroupandLieAlgebraandComparisonwiththeKoszul
AffineRepresentation
Thisaffine representationofLiegroup/algebrausedbySouriauhasbeen intensively studied
byMarle [7,100,109,110]. Souriaucalledthemechanicsdeducedfromthismodel, “affinemechanics”.
Wewill explainaffinerepresentationsandassociatednotionsascocycles,Souriaumomentmapand
cocycles, equivarianceofSouriaumomentmap,actionofLiegrouponasymplecticmanifoldanddual
spacesoffinite-dimensionalLiealgebras.Wehaveobservedthat these toolshavebeendevelopedin
parallelbyJean-LouisKoszul.Wewill establishclose linksandsynthetize thecomparisons ina table
ofbothapproaches.
6.1.AffineRepresentationsandCocycles
SouriaumodelofLiegroupthermodynamics is linkedwithaffinerepresentationofLiegroup
andLiealgebra.Wewillgive in the followingmainelementsof thisaffinerepresentation.
LetGbeaLiegroupandEafinite-dimensionalvectorspace.Amap A :G→Af f(E) canalways
bewrittenas:
A(g)(x)=R(g)(x)+θ(g)withg∈G,x∈E (67)
where the maps R :G→GL(E) and θ :G→E are determined by A. The map A is an affine
representationofG inE.
Themap θ :G→E isaone-cocycleofGwithvalues inE, for the linearrepresentationR; itmeans
thatθ isasmoothmapwhichsatisfies, forallg,h∈G:
θ(gh)=R(g)(θ(h))+θ(g) (68)
The linearrepresentationR is calledthe linearpartof theaffinerepresentationA, andθ is calledthe
one-cocycleofGassociatedto theaffinerepresentationA.Aone-coboundaryofGwithvalues inE,
for the linearrepresentationR, isamap θ :G→E whichcanbeexpressedas:
θ(g)=R(g)(c)−c , g∈G (69)
wherec isafixedelement inEandthenthereexistanelement c∈Esuchthat, forallg∈Gandx∈E:
A(g)(x)=R(g)(x+c)−c (70)
Let gbe aLie algebra andE afinite-dimensional vector space. A linearmap a : g→ af f(E)
alwayscanbewrittenas:
a(X)(x)= r(X)(x)+Θ(X)withX∈ g,x∈E (71)
where the linearmaps r : g→ gl(E) and Θ : g→Eare determined by a. Themap a is an affine
representationofG inE.The linearmapΘ : g→E isaone-cocycleofGwithvalues inE, for the linear
representation r; itmeans thatΘ satisfies, forallX,Y∈ g:
Θ([X,Y])= r(X)(Θ(Y))−r(Y)(Θ(X)) (72)
Θ is calledtheone-cocycleofgassociatedto theaffinerepresentationa.Aone-coboundaryofgwith
values inE, for the linear representation r, is a linearmap Θ : g→E which can be expressed as:
Θ(X)= r(X)(c) , X∈ gwhere c isafixedelement inE., andthenthereexistanelement c∈E such
that, forallX∈ gandx∈E:
a(X)(x)= r(X)(x+c)
70
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik