Page - 71 - in Differential Geometrical Theory of Statistics
Image of the Page - 71 -
Text of the Page - 71 -
Entropy2016,18, 386
Let A :GâAf f(E) beanafďŹnerepresentationofaLiegroupg inaďŹnite-dimensionalvector
space E, and g be the Lie algebra of G. Let R :GâGL(E) and θ :GâE be, respectively, the
linearpartandtheassociatedcocycleof theafďŹnerepresentationA.Let a : gâ af f(E) betheafďŹne
representation of the Lie algebra g associated to the afďŹne representation A :GâAf f(E) of the
LiegroupG. The linearpart of a is the linear representation r : gâ gl(E) associated to the linear
representation R :GâGL(E), and the associated cocycleÎ : gâE is related to the one-cocycle
θ :GâE by:
Î(X)=Teθ(X(e)) ,Xâ g (73)
This isdeducedfrom:
dA(exp(tX))(x)
dt âŁâŁâŁâŁ
t=0 = d(R(exp(tX))(x)+θ(exp(tX))
dt âŁâŁâŁâŁ
t=0 â a(X)(x)= r(X)(x)+Teθ(X) (74)
LetGbeaconnectedandsimplyconnectedLiegroup, R :GâGL(E) bea linear representation
ofG inaďŹnite-dimensionalvectorspaceE, and r : gâ gl(E) betheassociated linearrepresentation
of itsLiealgebrag. Foranyone-cocycleÎ : gâE of theLiealgebrag for the linearrepresentation r,
thereexistsauniqueone-cocycle θ :GâE oftheLiegroupG for thelinearrepresentationRsuchthat:
Î(X)=Teθ(X(e)) (75)
inotherwords,whichhasÎasassociatedLiealgebraone-cocycle. TheLiegroupone-cocycleθ isaLie
groupone-coboundary ifandonly if theLiealgebraone-cocycleÎ isaLiealgebraone-coboundary.
dθ(gexp(tX))
dt âŁâŁâŁâŁ
t=0 = d(θ(g)+R(g)(θ(exp(tX)))
dt âŁâŁâŁâŁ
t=0 âTgθ (
TLg(X) )
=R(g)(Î(x)) (76)
whichproves that if it exists, theLiegroupone-cocycleθ suchthatTeθ=Πisunique.
6.2. SouriauMomentMapandCocycles
SouriauďŹrst introducedthemomentmapinhisbook.Wewillgivethelinkwithpreviouscocycles
ofafďŹnerepresentation.
Thereexist JX linearapplicationfromg todifferential functiononM:
gâCâ(M,R)
Xâ JX (77)
Wecanthenassociateadifferentiableapplication J, calledmoment(um)mapfor theHamiltonian
LiegroupactionÎŚ:
J :Mâ gâ
x â J(x) suchthat JX(x)= ăJ(x),Xă , Xâ g (78)
Let Jmomentmap, foreach (X,Y)â gĂg,weassociateasmooth function ÎË(X,Y) :Mâ
deďŹnedby:
ÎË(X,Y)= J[X,Y]â{JX, JY}with {., .} : PoissonBracket (79)
It isaCasimirof thePoissonalgebraCâ(M, ), that satisďŹes:
ÎË([X,Y] ,Z)+ÎË([Y,Z] ,X)+ÎË([Z,X] ,Y)=0 (80)
WhenthePoissonmanifold isaconnectedsymplecticmanifold, the function ÎË(X,Y) is constant
onMandthemap:
71
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrĂŠdĂŠric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik