Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 71 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 71 - in Differential Geometrical Theory of Statistics

Image of the Page - 71 -

Image of the Page - 71 - in Differential Geometrical Theory of Statistics

Text of the Page - 71 -

Entropy2016,18, 386 Let A :G→Af f(E) beanaffinerepresentationofaLiegroupg inafinite-dimensionalvector space E, and g be the Lie algebra of G. Let R :G→GL(E) and θ :G→E be, respectively, the linearpartandtheassociatedcocycleof theaffinerepresentationA.Let a : g→ af f(E) betheaffine representation of the Lie algebra g associated to the affine representation A :G→Af f(E) of the LiegroupG. The linearpart of a is the linear representation r : g→ gl(E) associated to the linear representation R :G→GL(E), and the associated cocycleΘ : g→E is related to the one-cocycle θ :G→E by: Θ(X)=Teθ(X(e)) ,X∈ g (73) This isdeducedfrom: dA(exp(tX))(x) dt ∣∣∣∣ t=0 = d(R(exp(tX))(x)+θ(exp(tX)) dt ∣∣∣∣ t=0 ⇒ a(X)(x)= r(X)(x)+Teθ(X) (74) LetGbeaconnectedandsimplyconnectedLiegroup, R :G→GL(E) bea linear representation ofG inafinite-dimensionalvectorspaceE, and r : g→ gl(E) betheassociated linearrepresentation of itsLiealgebrag. Foranyone-cocycleΘ : g→E of theLiealgebrag for the linearrepresentation r, thereexistsauniqueone-cocycle θ :G→E oftheLiegroupG for thelinearrepresentationRsuchthat: Θ(X)=Teθ(X(e)) (75) inotherwords,whichhasΘasassociatedLiealgebraone-cocycle. TheLiegroupone-cocycleθ isaLie groupone-coboundary ifandonly if theLiealgebraone-cocycleΘ isaLiealgebraone-coboundary. dθ(gexp(tX)) dt ∣∣∣∣ t=0 = d(θ(g)+R(g)(θ(exp(tX))) dt ∣∣∣∣ t=0 ⇒Tgθ ( TLg(X) ) =R(g)(Θ(x)) (76) whichproves that if it exists, theLiegroupone-cocycleθ suchthatTeθ=Θ isunique. 6.2. SouriauMomentMapandCocycles Souriaufirst introducedthemomentmapinhisbook.Wewillgivethelinkwithpreviouscocycles ofaffinerepresentation. Thereexist JX linearapplicationfromg todifferential functiononM: g→C∞(M,R) X→ JX (77) Wecanthenassociateadifferentiableapplication J, calledmoment(um)mapfor theHamiltonian LiegroupactionΦ: J :M→ g∗ x → J(x) suchthat JX(x)= 〈J(x),X〉 , X∈ g (78) Let Jmomentmap, foreach (X,Y)∈ g×g,weassociateasmooth function Θ˜(X,Y) :M→ definedby: Θ˜(X,Y)= J[X,Y]−{JX, JY}with {., .} : PoissonBracket (79) It isaCasimirof thePoissonalgebraC∞(M, ), that satisfies: Θ˜([X,Y] ,Z)+Θ˜([Y,Z] ,X)+Θ˜([Z,X] ,Y)=0 (80) WhenthePoissonmanifold isaconnectedsymplecticmanifold, the function Θ˜(X,Y) is constant onMandthemap: 71
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics