Seite - 71 - in Differential Geometrical Theory of Statistics
Bild der Seite - 71 -
Text der Seite - 71 -
Entropy2016,18, 386
Let A :GâAf f(E) beanafïŹnerepresentationofaLiegroupg inaïŹnite-dimensionalvector
space E, and g be the Lie algebra of G. Let R :GâGL(E) and Ξ :GâE be, respectively, the
linearpartandtheassociatedcocycleof theafïŹnerepresentationA.Let a : gâ af f(E) betheafïŹne
representation of the Lie algebra g associated to the afïŹne representation A :GâAf f(E) of the
LiegroupG. The linearpart of a is the linear representation r : gâ gl(E) associated to the linear
representation R :GâGL(E), and the associated cocycleÎ : gâE is related to the one-cocycle
Ξ :GâE by:
Î(X)=TeΞ(X(e)) ,Xâ g (73)
This isdeducedfrom:
dA(exp(tX))(x)
dt âŁâŁâŁâŁ
t=0 = d(R(exp(tX))(x)+Ξ(exp(tX))
dt âŁâŁâŁâŁ
t=0 â a(X)(x)= r(X)(x)+TeΞ(X) (74)
LetGbeaconnectedandsimplyconnectedLiegroup, R :GâGL(E) bea linear representation
ofG inaïŹnite-dimensionalvectorspaceE, and r : gâ gl(E) betheassociated linearrepresentation
of itsLiealgebrag. Foranyone-cocycleÎ : gâE of theLiealgebrag for the linearrepresentation r,
thereexistsauniqueone-cocycle Ξ :GâE oftheLiegroupG for thelinearrepresentationRsuchthat:
Î(X)=TeΞ(X(e)) (75)
inotherwords,whichhasÎasassociatedLiealgebraone-cocycle. TheLiegroupone-cocycleΞ isaLie
groupone-coboundary ifandonly if theLiealgebraone-cocycleÎ isaLiealgebraone-coboundary.
dΞ(gexp(tX))
dt âŁâŁâŁâŁ
t=0 = d(Ξ(g)+R(g)(Ξ(exp(tX)))
dt âŁâŁâŁâŁ
t=0 âTgΞ (
TLg(X) )
=R(g)(Î(x)) (76)
whichproves that if it exists, theLiegroupone-cocycleΞ suchthatTeΞ=Πisunique.
6.2. SouriauMomentMapandCocycles
SouriauïŹrst introducedthemomentmapinhisbook.Wewillgivethelinkwithpreviouscocycles
ofafïŹnerepresentation.
Thereexist JX linearapplicationfromg todifferential functiononM:
gâCâ(M,R)
Xâ JX (77)
Wecanthenassociateadifferentiableapplication J, calledmoment(um)mapfor theHamiltonian
LiegroupactionΊ:
J :Mâ gâ
x â J(x) suchthat JX(x)= ăJ(x),Xă , Xâ g (78)
Let Jmomentmap, foreach (X,Y)â gĂg,weassociateasmooth function ÎË(X,Y) :Mâ
deïŹnedby:
ÎË(X,Y)= J[X,Y]â{JX, JY}with {., .} : PoissonBracket (79)
It isaCasimirof thePoissonalgebraCâ(M, ), that satisïŹes:
ÎË([X,Y] ,Z)+ÎË([Y,Z] ,X)+ÎË([Z,X] ,Y)=0 (80)
WhenthePoissonmanifold isaconnectedsymplecticmanifold, the function ÎË(X,Y) is constant
onMandthemap:
71
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik