Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 71 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 71 - in Differential Geometrical Theory of Statistics

Bild der Seite - 71 -

Bild der Seite - 71 - in Differential Geometrical Theory of Statistics

Text der Seite - 71 -

Entropy2016,18, 386 Let A :G→Af f(E) beanafïŹnerepresentationofaLiegroupg inaïŹnite-dimensionalvector space E, and g be the Lie algebra of G. Let R :G→GL(E) and Ξ :G→E be, respectively, the linearpartandtheassociatedcocycleof theafïŹnerepresentationA.Let a : g→ af f(E) betheafïŹne representation of the Lie algebra g associated to the afïŹne representation A :G→Af f(E) of the LiegroupG. The linearpart of a is the linear representation r : g→ gl(E) associated to the linear representation R :G→GL(E), and the associated cocycleΘ : g→E is related to the one-cocycle Ξ :G→E by: Θ(X)=TeΞ(X(e)) ,X∈ g (73) This isdeducedfrom: dA(exp(tX))(x) dt ∣∣∣∣ t=0 = d(R(exp(tX))(x)+Ξ(exp(tX)) dt ∣∣∣∣ t=0 ⇒ a(X)(x)= r(X)(x)+TeΞ(X) (74) LetGbeaconnectedandsimplyconnectedLiegroup, R :G→GL(E) bea linear representation ofG inaïŹnite-dimensionalvectorspaceE, and r : g→ gl(E) betheassociated linearrepresentation of itsLiealgebrag. Foranyone-cocycleΘ : g→E of theLiealgebrag for the linearrepresentation r, thereexistsauniqueone-cocycle Ξ :G→E oftheLiegroupG for thelinearrepresentationRsuchthat: Θ(X)=TeΞ(X(e)) (75) inotherwords,whichhasΘasassociatedLiealgebraone-cocycle. TheLiegroupone-cocycleΞ isaLie groupone-coboundary ifandonly if theLiealgebraone-cocycleΘ isaLiealgebraone-coboundary. dΞ(gexp(tX)) dt ∣∣∣∣ t=0 = d(Ξ(g)+R(g)(Ξ(exp(tX))) dt ∣∣∣∣ t=0 ⇒TgΞ ( TLg(X) ) =R(g)(Θ(x)) (76) whichproves that if it exists, theLiegroupone-cocycleΞ suchthatTeΞ=Θ isunique. 6.2. SouriauMomentMapandCocycles SouriauïŹrst introducedthemomentmapinhisbook.Wewillgivethelinkwithpreviouscocycles ofafïŹnerepresentation. Thereexist JX linearapplicationfromg todifferential functiononM: g→C∞(M,R) X→ JX (77) Wecanthenassociateadifferentiableapplication J, calledmoment(um)mapfor theHamiltonian LiegroupactionΊ: J :M→ g∗ x → J(x) suchthat JX(x)= 〈J(x),X〉 , X∈ g (78) Let Jmomentmap, foreach (X,Y)∈ g×g,weassociateasmooth function Θ˜(X,Y) :M→ deïŹnedby: Θ˜(X,Y)= J[X,Y]−{JX, JY}with {., .} : PoissonBracket (79) It isaCasimirof thePoissonalgebraC∞(M, ), that satisïŹes: Θ˜([X,Y] ,Z)+Θ˜([Y,Z] ,X)+Θ˜([Z,X] ,Y)=0 (80) WhenthePoissonmanifold isaconnectedsymplecticmanifold, the function Θ˜(X,Y) is constant onMandthemap: 71
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics