Page - 72 - in Differential Geometrical Theory of Statistics
Image of the Page - 72 -
Text of the Page - 72 -
Entropy2016,18, 386
ÎË(X,Y) : gĂgâ (81)
isaskew-symmetricbilinear form,andiscalledthesymplecticCocycleofLiealgebragassociatedto
themomentmap J.
LetÎ : gâ gâ bethemapsuchthat forall:
X,Yâ g : ăÎ(X),Yă= ÎË(X,Y) (82)
ThemapÎ is therefore theone-cocycleof theLiealgebra gwithvalues in gâ for the coadjoint
representation X â adâX ofgassociatedto theafďŹneactionofgonitsdual:
aÎ(X)(Ξ)= adââX(Ξ)+Î(X) , Xâ g , Ξâ gâ (83)
LetGbeaLiegroupwhoseLiealgebra isg. Theskew-symmetricbilinear form ÎËong=TeG can
beextendedintoacloseddifferential two-formonG, since the identityon ÎËmeansthat itsexterior
differentialdÎËvanishes. Inotherwords, ÎË isa2-cocycle for therestrictionof thedeRhamcohomology
ofG to left (or right) invariantdifferential forms.
6.3. EquivarianceofSouriauMomentMap
ThereexistsauniqueafďŹneaction a suchthat the linearpart isacoadjoint representation:
a :GĂgââ gâ
a(g,Ξ)=Adâgâ1Ξ+θ(g) (84)
with âŠ
Adâgâ1Ξ,X âŞ
= âŠ
Ξ,Adgâ1X âŞ
andthat induceequivarianceofmoment J.
6.4.ActionofLieGrouponaSymplecticManifold
LetÎŚ :GĂMâM beanactionofLiegroupGondifferentiablemanifoldM, the fundamental
ďŹeldassociatedtoanelementXofLiealgebragofgroupG is thevectorsďŹeldXMonM:
XM(x)= d
dt ÎŚexp(âtX) (x) âŁâŁâŁâŁ
t=0 WithÎŚg1 (
ÎŚg2(x) )
=ÎŚg1g2(x)andÎŚe(x)= x (85)
ÎŚ isHamiltonianonasymplecticmanifoldM, ifÎŚ is symplecticandif forallXâ g, the fundamental
ďŹeldXM isgloballyHamiltonian.
ThereisauniqueactionaoftheLiegroupGonthedualgâof itsLiealgebraforwhichthemoment
map J isequivariant, thatmeanssatisďŹes foreachxâM
J (
ÎŚg(x) )
= a(g, J(x))=Adâgâ1 (J(x))+θ(g) (86)
θ :Gâ gâ is calledcocycleassociated to thedifferentialTeθof1-cocyle θ associated to Jatneutral
element e:
ăTeθ(X),Yă= ÎË(X,Y)= J[X,Y]â{JX, JY} (87)
If insteadof Jwetakethemomentmap Jâ˛(x)= J(x)+Îź , xâM,whereÎźâ gâ is constant, the
symplecticcocycleθ is replacedby:
θâ˛(g)= θ(g)+ÎźâAdâgÎź (88)
whereθâ˛âθ=ÎźâAdâgÎź isone-coboundaryofGwithvalues ingâ.
72
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrĂŠdĂŠric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik