Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 72 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 72 - in Differential Geometrical Theory of Statistics

Image of the Page - 72 -

Image of the Page - 72 - in Differential Geometrical Theory of Statistics

Text of the Page - 72 -

Entropy2016,18, 386 Θ˜(X,Y) : g×g→ (81) isaskew-symmetricbilinear form,andiscalledthesymplecticCocycleofLiealgebragassociatedto themomentmap J. LetΘ : g→ g∗ bethemapsuchthat forall: X,Y∈ g : 〈Θ(X),Y〉= Θ˜(X,Y) (82) ThemapΘ is therefore theone-cocycleof theLiealgebra gwithvalues in g∗ for the coadjoint representation X → ad∗X ofgassociatedto theaffineactionofgonitsdual: aΘ(X)(ξ)= ad∗−X(ξ)+Θ(X) , X∈ g , ξ∈ g∗ (83) LetGbeaLiegroupwhoseLiealgebra isg. Theskew-symmetricbilinear form Θ˜ong=TeG can beextendedintoacloseddifferential two-formonG, since the identityon Θ˜meansthat itsexterior differentialdΘ˜vanishes. Inotherwords, Θ˜ isa2-cocycle for therestrictionof thedeRhamcohomology ofG to left (or right) invariantdifferential forms. 6.3. EquivarianceofSouriauMomentMap Thereexistsauniqueaffineaction a suchthat the linearpart isacoadjoint representation: a :G×g∗→ g∗ a(g,ξ)=Ad∗g−1ξ+θ(g) (84) with 〈 Ad∗g−1ξ,X 〉 = 〈 ξ,Adg−1X 〉 andthat induceequivarianceofmoment J. 6.4.ActionofLieGrouponaSymplecticManifold LetΦ :G×M→M beanactionofLiegroupGondifferentiablemanifoldM, the fundamental fieldassociatedtoanelementXofLiealgebragofgroupG is thevectorsfieldXMonM: XM(x)= d dt Φexp(−tX) (x) ∣∣∣∣ t=0 WithΦg1 ( Φg2(x) ) =Φg1g2(x)andΦe(x)= x (85) Φ isHamiltonianonasymplecticmanifoldM, ifΦ is symplecticandif forallX∈ g, the fundamental fieldXM isgloballyHamiltonian. ThereisauniqueactionaoftheLiegroupGonthedualg∗of itsLiealgebraforwhichthemoment map J isequivariant, thatmeanssatisfies foreachx∈M J ( Φg(x) ) = a(g, J(x))=Ad∗g−1 (J(x))+θ(g) (86) θ :G→ g∗ is calledcocycleassociated to thedifferentialTeθof1-cocyle θ associated to Jatneutral element e: 〈Teθ(X),Y〉= Θ˜(X,Y)= J[X,Y]−{JX, JY} (87) If insteadof Jwetakethemomentmap J′(x)= J(x)+μ , x∈M,whereμ∈ g∗ is constant, the symplecticcocycleθ is replacedby: θ′(g)= θ(g)+μ−Ad∗gμ (88) whereθ′−θ=μ−Ad∗gμ isone-coboundaryofGwithvalues ing∗. 72
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics