Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 72 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 72 - in Differential Geometrical Theory of Statistics

Bild der Seite - 72 -

Bild der Seite - 72 - in Differential Geometrical Theory of Statistics

Text der Seite - 72 -

Entropy2016,18, 386 Θ˜(X,Y) : g×g→ (81) isaskew-symmetricbilinear form,andiscalledthesymplecticCocycleofLiealgebragassociatedto themomentmap J. LetΘ : g→ g∗ bethemapsuchthat forall: X,Y∈ g : 〈Θ(X),Y〉= Θ˜(X,Y) (82) ThemapΘ is therefore theone-cocycleof theLiealgebra gwithvalues in g∗ for the coadjoint representation X → ad∗X ofgassociatedto theaffineactionofgonitsdual: aΘ(X)(ξ)= ad∗−X(ξ)+Θ(X) , X∈ g , ξ∈ g∗ (83) LetGbeaLiegroupwhoseLiealgebra isg. Theskew-symmetricbilinear form Θ˜ong=TeG can beextendedintoacloseddifferential two-formonG, since the identityon Θ˜meansthat itsexterior differentialdΘ˜vanishes. Inotherwords, Θ˜ isa2-cocycle for therestrictionof thedeRhamcohomology ofG to left (or right) invariantdifferential forms. 6.3. EquivarianceofSouriauMomentMap Thereexistsauniqueaffineaction a suchthat the linearpart isacoadjoint representation: a :G×g∗→ g∗ a(g,ξ)=Ad∗g−1ξ+θ(g) (84) with 〈 Ad∗g−1ξ,X 〉 = 〈 ξ,Adg−1X 〉 andthat induceequivarianceofmoment J. 6.4.ActionofLieGrouponaSymplecticManifold LetΦ :G×M→M beanactionofLiegroupGondifferentiablemanifoldM, the fundamental fieldassociatedtoanelementXofLiealgebragofgroupG is thevectorsfieldXMonM: XM(x)= d dt Φexp(−tX) (x) ∣∣∣∣ t=0 WithΦg1 ( Φg2(x) ) =Φg1g2(x)andΦe(x)= x (85) Φ isHamiltonianonasymplecticmanifoldM, ifΦ is symplecticandif forallX∈ g, the fundamental fieldXM isgloballyHamiltonian. ThereisauniqueactionaoftheLiegroupGonthedualg∗of itsLiealgebraforwhichthemoment map J isequivariant, thatmeanssatisfies foreachx∈M J ( Φg(x) ) = a(g, J(x))=Ad∗g−1 (J(x))+θ(g) (86) θ :G→ g∗ is calledcocycleassociated to thedifferentialTeθof1-cocyle θ associated to Jatneutral element e: 〈Teθ(X),Y〉= Θ˜(X,Y)= J[X,Y]−{JX, JY} (87) If insteadof Jwetakethemomentmap J′(x)= J(x)+μ , x∈M,whereμ∈ g∗ is constant, the symplecticcocycleθ is replacedby: θ′(g)= θ(g)+μ−Ad∗gμ (88) whereθ′−θ=μ−Ad∗gμ isone-coboundaryofGwithvalues ing∗. 72
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics