Seite - 72 - in Differential Geometrical Theory of Statistics
Bild der Seite - 72 -
Text der Seite - 72 -
Entropy2016,18, 386
Θ˜(X,Y) : g×g→ (81)
isaskew-symmetricbilinear form,andiscalledthesymplecticCocycleofLiealgebragassociatedto
themomentmap J.
LetΘ : g→ g∗ bethemapsuchthat forall:
X,Y∈ g : 〈Θ(X),Y〉= Θ˜(X,Y) (82)
ThemapΘ is therefore theone-cocycleof theLiealgebra gwithvalues in g∗ for the coadjoint
representation X → ad∗X ofgassociatedto theaffineactionofgonitsdual:
aΘ(X)(ξ)= ad∗−X(ξ)+Θ(X) , X∈ g , ξ∈ g∗ (83)
LetGbeaLiegroupwhoseLiealgebra isg. Theskew-symmetricbilinear form Θ˜ong=TeG can
beextendedintoacloseddifferential two-formonG, since the identityon Θ˜meansthat itsexterior
differentialdΘ˜vanishes. Inotherwords, Θ˜ isa2-cocycle for therestrictionof thedeRhamcohomology
ofG to left (or right) invariantdifferential forms.
6.3. EquivarianceofSouriauMomentMap
Thereexistsauniqueaffineaction a suchthat the linearpart isacoadjoint representation:
a :G×g∗→ g∗
a(g,ξ)=Ad∗g−1ξ+θ(g) (84)
with 〈
Ad∗g−1ξ,X 〉
= 〈
ξ,Adg−1X 〉
andthat induceequivarianceofmoment J.
6.4.ActionofLieGrouponaSymplecticManifold
LetΦ :G×M→M beanactionofLiegroupGondifferentiablemanifoldM, the fundamental
fieldassociatedtoanelementXofLiealgebragofgroupG is thevectorsfieldXMonM:
XM(x)= d
dt Φexp(−tX) (x) ∣∣∣∣
t=0 WithΦg1 (
Φg2(x) )
=Φg1g2(x)andΦe(x)= x (85)
Φ isHamiltonianonasymplecticmanifoldM, ifΦ is symplecticandif forallX∈ g, the fundamental
fieldXM isgloballyHamiltonian.
ThereisauniqueactionaoftheLiegroupGonthedualg∗of itsLiealgebraforwhichthemoment
map J isequivariant, thatmeanssatisfies foreachx∈M
J (
Φg(x) )
= a(g, J(x))=Ad∗g−1 (J(x))+θ(g) (86)
θ :G→ g∗ is calledcocycleassociated to thedifferentialTeθof1-cocyle θ associated to Jatneutral
element e:
〈Teθ(X),Y〉= Θ˜(X,Y)= J[X,Y]−{JX, JY} (87)
If insteadof Jwetakethemomentmap J′(x)= J(x)+μ , x∈M,whereμ∈ g∗ is constant, the
symplecticcocycleθ is replacedby:
θ′(g)= θ(g)+μ−Ad∗gμ (88)
whereθ′−θ=μ−Ad∗gμ isone-coboundaryofGwithvalues ing∗.
72
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik