Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 73 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 73 - in Differential Geometrical Theory of Statistics

Image of the Page - 73 -

Image of the Page - 73 - in Differential Geometrical Theory of Statistics

Text of the Page - 73 -

Entropy2016,18, 386 Therefore, thecohomologyclassof thesymplectic cocycle θonlydependsontheHamiltonian actionΦ, notonthechoiceof itsmomentmap J.Wehavealso: Θ˜′(X,Y)= Θ˜(X,Y)+〈μ, [X,Y]〉 (89) Thisproperty isusedbyJean-MarieSouriau[10] toofferaverynicecohomological interpretation of the totalmassofa classical (nonrelativistic) isolatedmechanical system.He [10]proves that the spaceofallpossiblemotionsof thesystemisasymplecticmanifoldonwhichtheGalileangroupacts byaHamiltonianaction. Thedimensionof thesymplecticcohomologyspaceof theGalileangroup (thequotientof thespaceofsymplecticone-cocyclesbythespaceofsymplecticone-coboundaries) is equal to1. Thecohomologyclassof thesymplecticcocycleassociatedtoamomentmapof theactionof theGalileangrouponthespaceofmotionsof thesystemis interpretedas the totalmassof thesystem. ForHamiltonianactionsofaLiegrouponaconnectedsymplecticmanifold, theequivariance of themomentmapwith respect to anaffineactionof thegroupon thedualof itsLie algebrahas beenprovedbyMarle [110]. Marle [110] has alsodeveloped thenotionof symplectic cocycle and hasprovedthatgivenaLiealgebrasymplecticcocycle, thereexistsontheassociatedconnectedand simplyconnectedLiegroupauniquecorrespondingLiegroupsymplectic cocycle.Marle [104]has alsoprovedthat thereexistsa two-parameter familyofdeformationsof theseactions (theHamiltonian actionsofaLiegrouponitscotangentbundleobtainedbylifting theactionsof thegrouponitselfby translations) intoapairofmutuallysymplecticallyorthogonalHamiltonianactionswhosemoment mapsareequivariantwithrespect toanaffineaction involvinganygivenLiegroupsymplecticcocycle. Marle [104]hasalsoexplainedwhyareductionoccurs forEuler-Poncaréequationmainlywhenthe Hamiltonian canbe expressed as themomentmap composedwith a smooth functiondefinedon thedualof theLiealgebra; theEuler-Poincaréequation is thenequivalent to theHamiltonequation writtenonthedualof theLiealgebra. 6.5.DualSpacesofFinite-DimensionalLieAlgebras Letgbeafinite-dimensionalLiealgebra,andg∗ itsdualspace. TheLiealgebragcanbeconsidered as thedualofg∗, thatmeansas thespaceof linear functionsong∗, andthebracketof theLiealgebrag isacomposition lawonthisspaceof linear functions. Thiscomposition lawcanbeextendedto the spaceC∞(g∗, )bysetting: {f,g}(x)= 〈x, [df(x),dg(x)]〉 , f andg∈C∞(g∗, ), x∈ g∗ (90) Ifweapply this formula forSouriauLiegroupthermodynamics,andforentropy s(Q)depending ongeometricheatQ: {s1,s2}(Q)= 〈Q, [ds1(Q),ds2(Q)]〉 , s1 and s2∈C∞(g∗, ), Q∈ g∗ (91) ThisbracketonC∞(g∗, )definesaPoissonstructureong∗, called its canonicalPoissonstructure. It implicitlyappears in theworksofSophusLie,andwasrediscoveredbyAlexanderKirillov [111], BertramKostantandJean-MarieSouriau. TheabovedefinedcanonicalPoissonstructureong∗ canbemodifiedbymeansofasymplectic cocycle Θ˜bydefiningthenewbracket: {f,g}Θ˜(x)= 〈x, [df(x),dg(x)]〉−Θ˜(df(x),dg(x)) (92) with Θ˜asymplecticcocycleof theLiealgebragbeingaskew-symmetricbilinearmap Θ˜ : g×g→ whichsatisfies: Θ˜([X,Y] ,Z)+Θ˜([Y,Z] ,X)+Θ˜([Z,X] ,Y)=0 (93) 73
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics