Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 73 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 73 - in Differential Geometrical Theory of Statistics

Bild der Seite - 73 -

Bild der Seite - 73 - in Differential Geometrical Theory of Statistics

Text der Seite - 73 -

Entropy2016,18, 386 Therefore, thecohomologyclassof thesymplectic cocycle θonlydependsontheHamiltonian actionΦ, notonthechoiceof itsmomentmap J.Wehavealso: Θ˜′(X,Y)= Θ˜(X,Y)+〈μ, [X,Y]〉 (89) Thisproperty isusedbyJean-MarieSouriau[10] toofferaverynicecohomological interpretation of the totalmassofa classical (nonrelativistic) isolatedmechanical system.He [10]proves that the spaceofallpossiblemotionsof thesystemisasymplecticmanifoldonwhichtheGalileangroupacts byaHamiltonianaction. Thedimensionof thesymplecticcohomologyspaceof theGalileangroup (thequotientof thespaceofsymplecticone-cocyclesbythespaceofsymplecticone-coboundaries) is equal to1. Thecohomologyclassof thesymplecticcocycleassociatedtoamomentmapof theactionof theGalileangrouponthespaceofmotionsof thesystemis interpretedas the totalmassof thesystem. ForHamiltonianactionsofaLiegrouponaconnectedsymplecticmanifold, theequivariance of themomentmapwith respect to anaffineactionof thegroupon thedualof itsLie algebrahas beenprovedbyMarle [110]. Marle [110] has alsodeveloped thenotionof symplectic cocycle and hasprovedthatgivenaLiealgebrasymplecticcocycle, thereexistsontheassociatedconnectedand simplyconnectedLiegroupauniquecorrespondingLiegroupsymplectic cocycle.Marle [104]has alsoprovedthat thereexistsa two-parameter familyofdeformationsof theseactions (theHamiltonian actionsofaLiegrouponitscotangentbundleobtainedbylifting theactionsof thegrouponitselfby translations) intoapairofmutuallysymplecticallyorthogonalHamiltonianactionswhosemoment mapsareequivariantwithrespect toanaffineaction involvinganygivenLiegroupsymplecticcocycle. Marle [104]hasalsoexplainedwhyareductionoccurs forEuler-Poncaréequationmainlywhenthe Hamiltonian canbe expressed as themomentmap composedwith a smooth functiondefinedon thedualof theLiealgebra; theEuler-Poincaréequation is thenequivalent to theHamiltonequation writtenonthedualof theLiealgebra. 6.5.DualSpacesofFinite-DimensionalLieAlgebras Letgbeafinite-dimensionalLiealgebra,andg∗ itsdualspace. TheLiealgebragcanbeconsidered as thedualofg∗, thatmeansas thespaceof linear functionsong∗, andthebracketof theLiealgebrag isacomposition lawonthisspaceof linear functions. Thiscomposition lawcanbeextendedto the spaceC∞(g∗, )bysetting: {f,g}(x)= 〈x, [df(x),dg(x)]〉 , f andg∈C∞(g∗, ), x∈ g∗ (90) Ifweapply this formula forSouriauLiegroupthermodynamics,andforentropy s(Q)depending ongeometricheatQ: {s1,s2}(Q)= 〈Q, [ds1(Q),ds2(Q)]〉 , s1 and s2∈C∞(g∗, ), Q∈ g∗ (91) ThisbracketonC∞(g∗, )definesaPoissonstructureong∗, called its canonicalPoissonstructure. It implicitlyappears in theworksofSophusLie,andwasrediscoveredbyAlexanderKirillov [111], BertramKostantandJean-MarieSouriau. TheabovedefinedcanonicalPoissonstructureong∗ canbemodifiedbymeansofasymplectic cocycle Θ˜bydefiningthenewbracket: {f,g}Θ˜(x)= 〈x, [df(x),dg(x)]〉−Θ˜(df(x),dg(x)) (92) with Θ˜asymplecticcocycleof theLiealgebragbeingaskew-symmetricbilinearmap Θ˜ : g×g→ whichsatisfies: Θ˜([X,Y] ,Z)+Θ˜([Y,Z] ,X)+Θ˜([Z,X] ,Y)=0 (93) 73
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics