Seite - 73 - in Differential Geometrical Theory of Statistics
Bild der Seite - 73 -
Text der Seite - 73 -
Entropy2016,18, 386
Therefore, thecohomologyclassof thesymplectic cocycle θonlydependsontheHamiltonian
actionΦ, notonthechoiceof itsmomentmap J.Wehavealso:
Θ˜′(X,Y)= Θ˜(X,Y)+〈μ, [X,Y]〉 (89)
Thisproperty isusedbyJean-MarieSouriau[10] toofferaverynicecohomological interpretation
of the totalmassofa classical (nonrelativistic) isolatedmechanical system.He [10]proves that the
spaceofallpossiblemotionsof thesystemisasymplecticmanifoldonwhichtheGalileangroupacts
byaHamiltonianaction. Thedimensionof thesymplecticcohomologyspaceof theGalileangroup
(thequotientof thespaceofsymplecticone-cocyclesbythespaceofsymplecticone-coboundaries) is
equal to1. Thecohomologyclassof thesymplecticcocycleassociatedtoamomentmapof theactionof
theGalileangrouponthespaceofmotionsof thesystemis interpretedas the totalmassof thesystem.
ForHamiltonianactionsofaLiegrouponaconnectedsymplecticmanifold, theequivariance
of themomentmapwith respect to anaffineactionof thegroupon thedualof itsLie algebrahas
beenprovedbyMarle [110]. Marle [110] has alsodeveloped thenotionof symplectic cocycle and
hasprovedthatgivenaLiealgebrasymplecticcocycle, thereexistsontheassociatedconnectedand
simplyconnectedLiegroupauniquecorrespondingLiegroupsymplectic cocycle.Marle [104]has
alsoprovedthat thereexistsa two-parameter familyofdeformationsof theseactions (theHamiltonian
actionsofaLiegrouponitscotangentbundleobtainedbylifting theactionsof thegrouponitselfby
translations) intoapairofmutuallysymplecticallyorthogonalHamiltonianactionswhosemoment
mapsareequivariantwithrespect toanaffineaction involvinganygivenLiegroupsymplecticcocycle.
Marle [104]hasalsoexplainedwhyareductionoccurs forEuler-Poncaréequationmainlywhenthe
Hamiltonian canbe expressed as themomentmap composedwith a smooth functiondefinedon
thedualof theLiealgebra; theEuler-Poincaréequation is thenequivalent to theHamiltonequation
writtenonthedualof theLiealgebra.
6.5.DualSpacesofFinite-DimensionalLieAlgebras
Letgbeafinite-dimensionalLiealgebra,andg∗ itsdualspace. TheLiealgebragcanbeconsidered
as thedualofg∗, thatmeansas thespaceof linear functionsong∗, andthebracketof theLiealgebrag
isacomposition lawonthisspaceof linear functions. Thiscomposition lawcanbeextendedto the
spaceC∞(g∗, )bysetting:
{f,g}(x)= 〈x, [df(x),dg(x)]〉 , f andg∈C∞(g∗, ), x∈ g∗ (90)
Ifweapply this formula forSouriauLiegroupthermodynamics,andforentropy s(Q)depending
ongeometricheatQ:
{s1,s2}(Q)= 〈Q, [ds1(Q),ds2(Q)]〉 , s1 and s2∈C∞(g∗, ), Q∈ g∗ (91)
ThisbracketonC∞(g∗, )definesaPoissonstructureong∗, called its canonicalPoissonstructure.
It implicitlyappears in theworksofSophusLie,andwasrediscoveredbyAlexanderKirillov [111],
BertramKostantandJean-MarieSouriau.
TheabovedefinedcanonicalPoissonstructureong∗ canbemodifiedbymeansofasymplectic
cocycle Θ˜bydefiningthenewbracket:
{f,g}Θ˜(x)= 〈x, [df(x),dg(x)]〉−Θ˜(df(x),dg(x)) (92)
with Θ˜asymplecticcocycleof theLiealgebragbeingaskew-symmetricbilinearmap Θ˜ : g×g→
whichsatisfies:
Θ˜([X,Y] ,Z)+Θ˜([Y,Z] ,X)+Θ˜([Z,X] ,Y)=0 (93)
73
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik