Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 75 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 75 - in Differential Geometrical Theory of Statistics

Image of the Page - 75 -

Image of the Page - 75 - in Differential Geometrical Theory of Statistics

Text of the Page - 75 -

Entropy2016,18, 386 AHessian structure (D, g) on a homogeneous spaceG/K is said to be an invariantHessian structure if bothD and g areG-invariant. A homogeneous spaceG/Kwith an invariantHessian structure (D, g) is calledahomogeneousHessianmanifoldand isdenotedby (G/K,D,g). Another result ofKoszul is that ahomogeneous self-dual regular convex cone is characterizedas a simply connectedsymmetrichomogeneousspaceadmittingan invariantHessianstructure that isdeïŹned bythepositivedeïŹnitesecondKoszul form(wehave identiïŹedinapreviouspaper that this second Koszul form is related to the Fishermetric). In parallel, Vinberg [125,126] gave a realization of a homogeneous regular convex domain as a real Siegel domain. Koszul has observed that regular convexconesadmitcanonicalHessianstructures, improvingsomeresultsofPyateckii-Shapiro that studiedrealizationsofhomogeneousboundeddomainsbyconsideringSiegeldomains inconnection with automorphic forms. KoszuldeïŹneda characteristic functionψΩ of a regular convex coneΩ, andshowedthatψΩ=DdlogψΩ isaHessianmetriconΩ invariantunderafïŹneautomorphismsofΩ. IfΩ isahomogeneousselfdualcone, thenthegradientmapping isasymmetrywithrespect to the canonicalHessianmetric, andisasymmetrichomogeneousRiemannianmanifold.More information onKoszulHessiangeometrycanbefoundin[127–136]. Wewillnowfocusourattention toKoszulafïŹnerepresentationofLiegroup/algebra. LetGa connexLiegroupandEarealorcomplexvectorspaceofïŹnitedimension,Koszulhas introducedan afïŹnerepresentationofG inE suchthat [117–124]: E→E a → sa∀s∈G (97) isanafïŹnetransformation.WesetA(E) thesetofall afïŹnetransformationsofavectorspaceE, aLie groupcalledafïŹne transformationgroupofE. ThesetGL(E)ofall regular linear transformationsofE, a subgroupofA(E). WedeïŹnea linearrepresentationfromG toGL(E): f :G→GL(E) s → f(s)a= sa−so∀a∈E (98) andanapplicationfromG toE: q :G→E s →q(s)= so∀s∈G (99) Thenwehave∀s,t∈G: f(s)q(t)+q(s)=q(st) (100) deducedfrom f(s)q(t)+q(s)= sq(t)−so+so= sq(t)= sto=q(st). On thecontrary, if anapplication q fromG toEanda linear representation f fromG toGL(E) verifypreviousequation, thenwecandeïŹneanafïŹnerepresentationofG inE,written (f,q): Af f(s) : a → sa= f(s)a+q(s)∀s∈G,∀a∈E (101) The condition f(s)q(t)+q(s) = q(st) is equivalent to requiring the followingmapping tobe anhomomorphism: Af f : s∈G →Af f(s)∈A(E) (102) 75
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics