Page - 75 - in Differential Geometrical Theory of Statistics
Image of the Page - 75 -
Text of the Page - 75 -
Entropy2016,18, 386
AHessian structure (D, g) on a homogeneous spaceG/K is said to be an invariantHessian
structure if bothD and g areG-invariant. A homogeneous spaceG/Kwith an invariantHessian
structure (D, g) is calledahomogeneousHessianmanifoldand isdenotedby (G/K,D,g). Another
result ofKoszul is that ahomogeneous self-dual regular convex cone is characterizedas a simply
connectedsymmetrichomogeneousspaceadmittingan invariantHessianstructure that isdeïŹned
bythepositivedeïŹnitesecondKoszul form(wehave identiïŹedinapreviouspaper that this second
Koszul form is related to the Fishermetric). In parallel, Vinberg [125,126] gave a realization of a
homogeneous regular convex domain as a real Siegel domain. Koszul has observed that regular
convexconesadmitcanonicalHessianstructures, improvingsomeresultsofPyateckii-Shapiro that
studiedrealizationsofhomogeneousboundeddomainsbyconsideringSiegeldomains inconnection
with automorphic forms. KoszuldeïŹneda characteristic functionÏΩ of a regular convex coneΩ,
andshowedthatÏΩ=DdlogÏΩ isaHessianmetriconΩ invariantunderafïŹneautomorphismsofΩ.
IfΩ isahomogeneousselfdualcone, thenthegradientmapping isasymmetrywithrespect to the
canonicalHessianmetric, andisasymmetrichomogeneousRiemannianmanifold.More information
onKoszulHessiangeometrycanbefoundin[127â136].
Wewillnowfocusourattention toKoszulafïŹnerepresentationofLiegroup/algebra. LetGa
connexLiegroupandEarealorcomplexvectorspaceofïŹnitedimension,Koszulhas introducedan
afïŹnerepresentationofG inE suchthat [117â124]:
EâE
a â saâsâG (97)
isanafïŹnetransformation.WesetA(E) thesetofall afïŹnetransformationsofavectorspaceE, aLie
groupcalledafïŹne transformationgroupofE. ThesetGL(E)ofall regular linear transformationsofE,
a subgroupofA(E).
WedeïŹnea linearrepresentationfromG toGL(E):
f :GâGL(E)
s â f(s)a= saâsoâaâE (98)
andanapplicationfromG toE:
q :GâE
s âq(s)= soâsâG (99)
Thenwehaveâs,tâG:
f(s)q(t)+q(s)=q(st) (100)
deducedfrom f(s)q(t)+q(s)= sq(t)âso+so= sq(t)= sto=q(st).
On thecontrary, if anapplication q fromG toEanda linear representation f fromG toGL(E)
verifypreviousequation, thenwecandeïŹneanafïŹnerepresentationofG inE,written (f,q):
Af f(s) : a â sa= f(s)a+q(s)âsâG,âaâE (101)
The condition f(s)q(t)+q(s) = q(st) is equivalent to requiring the followingmapping tobe
anhomomorphism:
Af f : sâG âAf f(s)âA(E) (102)
75
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik