Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 75 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 75 - in Differential Geometrical Theory of Statistics

Bild der Seite - 75 -

Bild der Seite - 75 - in Differential Geometrical Theory of Statistics

Text der Seite - 75 -

Entropy2016,18, 386 AHessian structure (D, g) on a homogeneous spaceG/K is said to be an invariantHessian structure if bothD and g areG-invariant. A homogeneous spaceG/Kwith an invariantHessian structure (D, g) is calledahomogeneousHessianmanifoldand isdenotedby (G/K,D,g). Another result ofKoszul is that ahomogeneous self-dual regular convex cone is characterizedas a simply connectedsymmetrichomogeneousspaceadmittingan invariantHessianstructure that isdefined bythepositivedefinitesecondKoszul form(wehave identifiedinapreviouspaper that this second Koszul form is related to the Fishermetric). In parallel, Vinberg [125,126] gave a realization of a homogeneous regular convex domain as a real Siegel domain. Koszul has observed that regular convexconesadmitcanonicalHessianstructures, improvingsomeresultsofPyateckii-Shapiro that studiedrealizationsofhomogeneousboundeddomainsbyconsideringSiegeldomains inconnection with automorphic forms. Koszuldefineda characteristic functionψΩ of a regular convex coneΩ, andshowedthatψΩ=DdlogψΩ isaHessianmetriconΩ invariantunderaffineautomorphismsofΩ. IfΩ isahomogeneousselfdualcone, thenthegradientmapping isasymmetrywithrespect to the canonicalHessianmetric, andisasymmetrichomogeneousRiemannianmanifold.More information onKoszulHessiangeometrycanbefoundin[127–136]. Wewillnowfocusourattention toKoszulaffinerepresentationofLiegroup/algebra. LetGa connexLiegroupandEarealorcomplexvectorspaceoffinitedimension,Koszulhas introducedan affinerepresentationofG inE suchthat [117–124]: E→E a → sa∀s∈G (97) isanaffinetransformation.WesetA(E) thesetofall affinetransformationsofavectorspaceE, aLie groupcalledaffine transformationgroupofE. ThesetGL(E)ofall regular linear transformationsofE, a subgroupofA(E). Wedefinea linearrepresentationfromG toGL(E): f :G→GL(E) s → f(s)a= sa−so∀a∈E (98) andanapplicationfromG toE: q :G→E s →q(s)= so∀s∈G (99) Thenwehave∀s,t∈G: f(s)q(t)+q(s)=q(st) (100) deducedfrom f(s)q(t)+q(s)= sq(t)−so+so= sq(t)= sto=q(st). On thecontrary, if anapplication q fromG toEanda linear representation f fromG toGL(E) verifypreviousequation, thenwecandefineanaffinerepresentationofG inE,written (f,q): Af f(s) : a → sa= f(s)a+q(s)∀s∈G,∀a∈E (101) The condition f(s)q(t)+q(s) = q(st) is equivalent to requiring the followingmapping tobe anhomomorphism: Af f : s∈G →Af f(s)∈A(E) (102) 75
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics