Seite - 75 - in Differential Geometrical Theory of Statistics
Bild der Seite - 75 -
Text der Seite - 75 -
Entropy2016,18, 386
AHessian structure (D, g) on a homogeneous spaceG/K is said to be an invariantHessian
structure if bothD and g areG-invariant. A homogeneous spaceG/Kwith an invariantHessian
structure (D, g) is calledahomogeneousHessianmanifoldand isdenotedby (G/K,D,g). Another
result ofKoszul is that ahomogeneous self-dual regular convex cone is characterizedas a simply
connectedsymmetrichomogeneousspaceadmittingan invariantHessianstructure that isdefined
bythepositivedefinitesecondKoszul form(wehave identifiedinapreviouspaper that this second
Koszul form is related to the Fishermetric). In parallel, Vinberg [125,126] gave a realization of a
homogeneous regular convex domain as a real Siegel domain. Koszul has observed that regular
convexconesadmitcanonicalHessianstructures, improvingsomeresultsofPyateckii-Shapiro that
studiedrealizationsofhomogeneousboundeddomainsbyconsideringSiegeldomains inconnection
with automorphic forms. Koszuldefineda characteristic functionψΩ of a regular convex coneΩ,
andshowedthatψΩ=DdlogψΩ isaHessianmetriconΩ invariantunderaffineautomorphismsofΩ.
IfΩ isahomogeneousselfdualcone, thenthegradientmapping isasymmetrywithrespect to the
canonicalHessianmetric, andisasymmetrichomogeneousRiemannianmanifold.More information
onKoszulHessiangeometrycanbefoundin[127–136].
Wewillnowfocusourattention toKoszulaffinerepresentationofLiegroup/algebra. LetGa
connexLiegroupandEarealorcomplexvectorspaceoffinitedimension,Koszulhas introducedan
affinerepresentationofG inE suchthat [117–124]:
E→E
a → sa∀s∈G (97)
isanaffinetransformation.WesetA(E) thesetofall affinetransformationsofavectorspaceE, aLie
groupcalledaffine transformationgroupofE. ThesetGL(E)ofall regular linear transformationsofE,
a subgroupofA(E).
Wedefinea linearrepresentationfromG toGL(E):
f :G→GL(E)
s → f(s)a= sa−so∀a∈E (98)
andanapplicationfromG toE:
q :G→E
s →q(s)= so∀s∈G (99)
Thenwehave∀s,t∈G:
f(s)q(t)+q(s)=q(st) (100)
deducedfrom f(s)q(t)+q(s)= sq(t)−so+so= sq(t)= sto=q(st).
On thecontrary, if anapplication q fromG toEanda linear representation f fromG toGL(E)
verifypreviousequation, thenwecandefineanaffinerepresentationofG inE,written (f,q):
Af f(s) : a → sa= f(s)a+q(s)∀s∈G,∀a∈E (101)
The condition f(s)q(t)+q(s) = q(st) is equivalent to requiring the followingmapping tobe
anhomomorphism:
Af f : s∈G →Af f(s)∈A(E) (102)
75
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik