Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 78 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 78 - in Differential Geometrical Theory of Statistics

Image of the Page - 78 -

Image of the Page - 78 - in Differential Geometrical Theory of Statistics

Text of the Page - 78 -

Entropy2016,18, 386 R ( ∂ ∂xk , ∂ ∂xl ) ∂ ∂xj =∑ i Rijkl ∂ ∂xi withRijkl= ∂Γilj ∂xk − ∂Γikj ∂xl +∑ m ( ΓmljΓ i km−ΓmkjΓilm ) (116) TheRicci tensorRicofD isgivenby: Ric(Y,Z)=Tr{X→R(X,Y)Z} (117) Rjk=Ric ( ∂ ∂xj , ∂ ∂xk ) =∑ i Rikij (118) In the following, we will consider a homogeneous space G/K endowed with a G-invariant flat connection D (homogeneous flat manifold) written (G/K, D). Koszul has proved a bijective correspondence between the set of G-invariant flat connections on G/K and the set of affine representations of the Lie algebra ofG. Let (G, K) be the pair of connected Lie group G and its closedsubgroupK. Let g theLiealgebraofG andkbe theLie subalgebraof g corresponding toK. X∗ isdefinedas thevectorfieldonM=G/K inducedbythe1-parametergroupof transformation e−tX.WedenoteAX∗=LX∗−DX∗,withLX∗ theLiederivative. LetVbethe tangentspaceofG/Kato={K}andletconsider, the followingvaluesato: f(X)=AX∗,o (119) q(X)=X∗o (120) whereAX∗Y∗=−DY∗X∗ (whereD isa locallyflat linearconnection: its torsionandcurvature tensors vanish identically), then: f ([X,Y])= [f(X), f(Y)] (121) f(X)q(Y)− f(Y)q(X)= q([X,Y]) (122) whereker(k)= q, and (f,q)anaffinerepresentationof theLiealgebrag: ∀X∈ g, Xa=∑ i ( ∑ j f(X)jix i+q(X)i ) ∂ ∂xi (123) The1-parameter transformationgroupgeneratedbyXa isanaffinetransformationgroupofV, with linearpartsgivenby e−t.f(X) andtranslationvectorparts: ∞ ∑ n=1 (−t)n n! f(X)n−1q(X) (124) Theserelationsareprovedbyusing:⎧⎨⎩ AX∗Y ∗−AY∗X∗=[X∗,Y∗] [AX∗,AY∗]=A[X∗,Y]∗ withAX∗Y∗=−DY∗X∗ (125) basedontheproperty that theconnectionD is locallyflatandthere is local coordinatesystemsonM suchthatD ∂ ∂xi ∂ ∂xj =0withavanishingtorsionandcurvature: T(X,Y)=0⇒DXY−DYX=[X,Y] (126) R(X,Y)Z=0⇒DXDYZ−DYDXZ=D[X,Y]Z (127) deducedfromthefact thea locallyflat linearconnection(vanishingof torsionandcurvature). 78
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics