Page - 78 - in Differential Geometrical Theory of Statistics
Image of the Page - 78 -
Text of the Page - 78 -
Entropy2016,18, 386
R (
∂
∂xk , ∂
∂xl )
∂
∂xj =∑
i Rijkl ∂
∂xi withRijkl= ∂Γilj
∂xk − ∂Γikj
∂xl +∑
m (
ΓmljΓ i
km−ΓmkjΓilm )
(116)
TheRicci tensorRicofD isgivenby:
Ric(Y,Z)=Tr{X→R(X,Y)Z} (117)
Rjk=Ric (
∂
∂xj , ∂
∂xk )
=∑
i Rikij (118)
In the following, we will consider a homogeneous space G/K endowed with a G-invariant
flat connection D (homogeneous flat manifold) written (G/K, D). Koszul has proved a bijective
correspondence between the set of G-invariant flat connections on G/K and the set of affine
representations of the Lie algebra ofG. Let (G, K) be the pair of connected Lie group G and its
closedsubgroupK. Let g theLiealgebraofG andkbe theLie subalgebraof g corresponding toK.
X∗ isdefinedas thevectorfieldonM=G/K inducedbythe1-parametergroupof transformation
e−tX.WedenoteAX∗=LX∗−DX∗,withLX∗ theLiederivative.
LetVbethe tangentspaceofG/Kato={K}andletconsider, the followingvaluesato:
f(X)=AX∗,o (119)
q(X)=X∗o (120)
whereAX∗Y∗=−DY∗X∗ (whereD isa locallyflat linearconnection: its torsionandcurvature tensors
vanish identically), then:
f ([X,Y])= [f(X), f(Y)] (121)
f(X)q(Y)− f(Y)q(X)= q([X,Y]) (122)
whereker(k)= q, and (f,q)anaffinerepresentationof theLiealgebrag:
∀X∈ g, Xa=∑
i (
∑
j f(X)jix i+q(X)i )
∂
∂xi (123)
The1-parameter transformationgroupgeneratedbyXa isanaffinetransformationgroupofV,
with linearpartsgivenby e−t.f(X) andtranslationvectorparts:
∞
∑
n=1 (−t)n
n! f(X)n−1q(X) (124)
Theserelationsareprovedbyusing:⎧⎨⎩
AX∗Y ∗−AY∗X∗=[X∗,Y∗]
[AX∗,AY∗]=A[X∗,Y]∗ withAX∗Y∗=−DY∗X∗ (125)
basedontheproperty that theconnectionD is locallyflatandthere is local coordinatesystemsonM
suchthatD ∂
∂xi ∂
∂xj =0withavanishingtorsionandcurvature:
T(X,Y)=0⇒DXY−DYX=[X,Y] (126)
R(X,Y)Z=0⇒DXDYZ−DYDXZ=D[X,Y]Z (127)
deducedfromthefact thea locallyflat linearconnection(vanishingof torsionandcurvature).
78
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik