Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 78 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 78 - in Differential Geometrical Theory of Statistics

Bild der Seite - 78 -

Bild der Seite - 78 - in Differential Geometrical Theory of Statistics

Text der Seite - 78 -

Entropy2016,18, 386 R ( ∂ ∂xk , ∂ ∂xl ) ∂ ∂xj =∑ i Rijkl ∂ ∂xi withRijkl= ∂Γilj ∂xk − ∂Γikj ∂xl +∑ m ( ΓmljΓ i km−ΓmkjΓilm ) (116) TheRicci tensorRicofD isgivenby: Ric(Y,Z)=Tr{X→R(X,Y)Z} (117) Rjk=Ric ( ∂ ∂xj , ∂ ∂xk ) =∑ i Rikij (118) In the following, we will consider a homogeneous space G/K endowed with a G-invariant ïŹ‚at connection D (homogeneous ïŹ‚at manifold) written (G/K, D). Koszul has proved a bijective correspondence between the set of G-invariant ïŹ‚at connections on G/K and the set of afïŹne representations of the Lie algebra ofG. Let (G, K) be the pair of connected Lie group G and its closedsubgroupK. Let g theLiealgebraofG andkbe theLie subalgebraof g corresponding toK. X∗ isdeïŹnedas thevectorïŹeldonM=G/K inducedbythe1-parametergroupof transformation e−tX.WedenoteAX∗=LX∗−DX∗,withLX∗ theLiederivative. LetVbethe tangentspaceofG/Kato={K}andletconsider, the followingvaluesato: f(X)=AX∗,o (119) q(X)=X∗o (120) whereAX∗Y∗=−DY∗X∗ (whereD isa locallyïŹ‚at linearconnection: its torsionandcurvature tensors vanish identically), then: f ([X,Y])= [f(X), f(Y)] (121) f(X)q(Y)− f(Y)q(X)= q([X,Y]) (122) whereker(k)= q, and (f,q)anafïŹnerepresentationof theLiealgebrag: ∀X∈ g, Xa=∑ i ( ∑ j f(X)jix i+q(X)i ) ∂ ∂xi (123) The1-parameter transformationgroupgeneratedbyXa isanafïŹnetransformationgroupofV, with linearpartsgivenby e−t.f(X) andtranslationvectorparts: ∞ ∑ n=1 (−t)n n! f(X)n−1q(X) (124) Theserelationsareprovedbyusing:⎧⎚⎩ AX∗Y ∗−AY∗X∗=[X∗,Y∗] [AX∗,AY∗]=A[X∗,Y]∗ withAX∗Y∗=−DY∗X∗ (125) basedontheproperty that theconnectionD is locallyïŹ‚atandthere is local coordinatesystemsonM suchthatD ∂ ∂xi ∂ ∂xj =0withavanishingtorsionandcurvature: T(X,Y)=0⇒DXY−DYX=[X,Y] (126) R(X,Y)Z=0⇒DXDYZ−DYDXZ=D[X,Y]Z (127) deducedfromthefact thea locallyïŹ‚at linearconnection(vanishingof torsionandcurvature). 78
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics