Seite - 78 - in Differential Geometrical Theory of Statistics
Bild der Seite - 78 -
Text der Seite - 78 -
Entropy2016,18, 386
R (
â
âxk , â
âxl )
â
âxj =â
i Rijkl â
âxi withRijkl= âÎilj
âxk â âÎikj
âxl +â
m (
ÎmljÎ i
kmâÎmkjÎilm )
(116)
TheRicci tensorRicofD isgivenby:
Ric(Y,Z)=Tr{XâR(X,Y)Z} (117)
Rjk=Ric (
â
âxj , â
âxk )
=â
i Rikij (118)
In the following, we will consider a homogeneous space G/K endowed with a G-invariant
ïŹat connection D (homogeneous ïŹat manifold) written (G/K, D). Koszul has proved a bijective
correspondence between the set of G-invariant ïŹat connections on G/K and the set of afïŹne
representations of the Lie algebra ofG. Let (G, K) be the pair of connected Lie group G and its
closedsubgroupK. Let g theLiealgebraofG andkbe theLie subalgebraof g corresponding toK.
Xâ isdeïŹnedas thevectorïŹeldonM=G/K inducedbythe1-parametergroupof transformation
eâtX.WedenoteAXâ=LXââDXâ,withLXâ theLiederivative.
LetVbethe tangentspaceofG/Kato={K}andletconsider, the followingvaluesato:
f(X)=AXâ,o (119)
q(X)=Xâo (120)
whereAXâYâ=âDYâXâ (whereD isa locallyïŹat linearconnection: its torsionandcurvature tensors
vanish identically), then:
f ([X,Y])= [f(X), f(Y)] (121)
f(X)q(Y)â f(Y)q(X)= q([X,Y]) (122)
whereker(k)= q, and (f,q)anafïŹnerepresentationof theLiealgebrag:
âXâ g, Xa=â
i (
â
j f(X)jix i+q(X)i )
â
âxi (123)
The1-parameter transformationgroupgeneratedbyXa isanafïŹnetransformationgroupofV,
with linearpartsgivenby eât.f(X) andtranslationvectorparts:
â
â
n=1 (ât)n
n! f(X)nâ1q(X) (124)
Theserelationsareprovedbyusing:â§âšâ©
AXâY ââAYâXâ=[Xâ,Yâ]
[AXâ,AYâ]=A[Xâ,Y]â withAXâYâ=âDYâXâ (125)
basedontheproperty that theconnectionD is locallyïŹatandthere is local coordinatesystemsonM
suchthatD â
âxi â
âxj =0withavanishingtorsionandcurvature:
T(X,Y)=0âDXYâDYX=[X,Y] (126)
R(X,Y)Z=0âDXDYZâDYDXZ=D[X,Y]Z (127)
deducedfromthefact thea locallyïŹat linearconnection(vanishingof torsionandcurvature).
78
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik