Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 80 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 80 - in Differential Geometrical Theory of Statistics

Image of the Page - 80 -

Image of the Page - 80 - in Differential Geometrical Theory of Statistics

Text of the Page - 80 -

Entropy2016,18, 386 Dα0(q(X),q(Y))=α0(f(Y)q(X)) (140) Tosynthetize theresultprovedbyJean-LouisKoszul, ifαo andDαo are thevaluesofαandDα ato, then: αo (q(X))=Tr(f(X)) ∀X∈ g (141) Dαo (q(X),q(Y))= 〈q(X),q(Y)〉o=α0(f(X)q(Y)) ∀X,Y∈ g (142) Jean-LouisKoszulhasalsoproved that the innerproduct 〈., .〉onV, givenby theRiemannian metricgij, satisfies the followingconditions: 〈f(X)q(Y),q(Z)〉+〈q(Y), f(X)q(Z)〉= 〈f(Y)q(X),q(Z)〉+〈q(X), f(Y)q(Z)〉 (143) To make the link with Souriau model of thermodynamics, the first Koszul form α=DlogΦ=Tr(f(X))will play the role of the geometric heat Q and the second koszul form Dα=DdlogΦ= 〈q(X),q(Y)〉owillbe theequivalentofSouriau-Fishermetric that isG-invariant. Koszul theory iswiderand integrates“informationgeometry” in its corpus. Koszul [117–124] hasprovedgeneral results, for example: on a complexhomogeneous space, an invariant volume defineswith thecomplexstructure,an invariantHermitianform. If this space isaboundeddomain, thenthishermitianformispositivedefiniteandcoincideswith theclassicalBergmanmetricof this domain. Duringhis stay at Institute forAdvancedStudy inPrinceton, Koszul [117–124] has also demonstrated thereciprocal foraclassof complexhomogeneousspaces,definedbyopenorbitsof complexaffine transformationgroups.KoszulandVey[137,138]havealsodevelopedextendedresults with the followingtheoremforconnectedhessianmanifolds: Theorem3(Koszul-VeyTheorem).LetMbeaconnectedhessianmanifoldwithhessianmetric g. Suppose thatMadmits a closed1-formα such thatDα= gand there exists agroupGof affineautomorphismsofM preservingα: • If M/G isquasi-compact, thentheuniversal coveringmanifoldofMisaffinely isomorphic toa convexdomainΩofanaffinespacenotcontaininganyfull straight line. • IfM/Giscompact, thenΩ is a sharpconvexcone. Onthisbasis,KoszulhasgivenaLiegroupconstructionof ahomogeneouscone thathasbeendeveloped andapplied in informationgeometrybyShimaandBoyomin the frameworkofHessiangeometry. The results of Koszul arealso fundamental in the frameworkofSouriau thermodynamics. 7. SouriauLieGroupModelandKoszulHessianGeometryAppliedintheContextof InformationGeometryforMultivariateGaussianDensities We will enlighten Souriau model with Koszul hessian geometry applied in information geometry[117–124],recentlystudiedin[3,9,139].Wehavepreviouslyshownthatinformationgeometry couldbefoundedonthenotionofKoszul-VinbergcharacteristicfunctionψΩ(x)= Ω∗ e−〈x,ξ〉dξ, ∀x∈Ω whereΩ is a convex cone andΩ∗ the dual cone with respect to Cartan-Killing inner product 〈x,y〉=−B(x,θ(y)) invariant by automorphisms ofΩ, with B(., .) theKilling formand θ(.) the Cartan involution.WecandeveloptheKoszulcharacteristic function: ψΩ(x+λu)=ψΩ(x)−λ〈x∗,u〉+λ 2 2 〈K(x)u,u〉+ ... (144) withx∗= dΦ(x) dx ,Φ(x)=−logψΩ(x)andK(x)= d 2Φ(x) dx2 (145) 80
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics