Page - 80 - in Differential Geometrical Theory of Statistics
Image of the Page - 80 -
Text of the Page - 80 -
Entropy2016,18, 386
Dα0(q(X),q(Y))=α0(f(Y)q(X)) (140)
Tosynthetize theresultprovedbyJean-LouisKoszul, ifαo andDαo are thevaluesofαandDα
ato, then:
αo (q(X))=Tr(f(X)) ∀X∈ g (141)
Dαo (q(X),q(Y))= 〈q(X),q(Y)〉o=α0(f(X)q(Y)) ∀X,Y∈ g (142)
Jean-LouisKoszulhasalsoproved that the innerproduct 〈., .〉onV, givenby theRiemannian
metricgij, satisfies the followingconditions:
〈f(X)q(Y),q(Z)〉+〈q(Y), f(X)q(Z)〉= 〈f(Y)q(X),q(Z)〉+〈q(X), f(Y)q(Z)〉 (143)
To make the link with Souriau model of thermodynamics, the first Koszul form
α=DlogΦ=Tr(f(X))will play the role of the geometric heat Q and the second koszul form
Dα=DdlogΦ= 〈q(X),q(Y)〉owillbe theequivalentofSouriau-Fishermetric that isG-invariant.
Koszul theory iswiderand integrates“informationgeometry” in its corpus. Koszul [117–124]
hasprovedgeneral results, for example: on a complexhomogeneous space, an invariant volume
defineswith thecomplexstructure,an invariantHermitianform. If this space isaboundeddomain,
thenthishermitianformispositivedefiniteandcoincideswith theclassicalBergmanmetricof this
domain. Duringhis stay at Institute forAdvancedStudy inPrinceton, Koszul [117–124] has also
demonstrated thereciprocal foraclassof complexhomogeneousspaces,definedbyopenorbitsof
complexaffine transformationgroups.KoszulandVey[137,138]havealsodevelopedextendedresults
with the followingtheoremforconnectedhessianmanifolds:
Theorem3(Koszul-VeyTheorem).LetMbeaconnectedhessianmanifoldwithhessianmetric g. Suppose
thatMadmits a closed1-formα such thatDα= gand there exists agroupGof affineautomorphismsofM
preservingα:
• If M/G isquasi-compact, thentheuniversal coveringmanifoldofMisaffinely isomorphic toa
convexdomainΩofanaffinespacenotcontaininganyfull straight line.
• IfM/Giscompact, thenΩ is a sharpconvexcone.
Onthisbasis,KoszulhasgivenaLiegroupconstructionof ahomogeneouscone thathasbeendeveloped
andapplied in informationgeometrybyShimaandBoyomin the frameworkofHessiangeometry. The results of
Koszul arealso fundamental in the frameworkofSouriau thermodynamics.
7. SouriauLieGroupModelandKoszulHessianGeometryAppliedintheContextof
InformationGeometryforMultivariateGaussianDensities
We will enlighten Souriau model with Koszul hessian geometry applied in information
geometry[117–124],recentlystudiedin[3,9,139].Wehavepreviouslyshownthatinformationgeometry
couldbefoundedonthenotionofKoszul-VinbergcharacteristicfunctionψΩ(x)=
Ω∗ e−〈x,ξ〉dξ, ∀x∈Ω
whereΩ is a convex cone andΩ∗ the dual cone with respect to Cartan-Killing inner product
〈x,y〉=−B(x,θ(y)) invariant by automorphisms ofΩ, with B(., .) theKilling formand θ(.) the
Cartan involution.WecandeveloptheKoszulcharacteristic function:
ψΩ(x+λu)=ψΩ(x)−λ〈x∗,u〉+λ 2
2 〈K(x)u,u〉+ ... (144)
withx∗= dΦ(x)
dx ,Φ(x)=−logψΩ(x)andK(x)= d 2Φ(x)
dx2 (145)
80
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik