Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 80 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 80 - in Differential Geometrical Theory of Statistics

Bild der Seite - 80 -

Bild der Seite - 80 - in Differential Geometrical Theory of Statistics

Text der Seite - 80 -

Entropy2016,18, 386 Dα0(q(X),q(Y))=α0(f(Y)q(X)) (140) Tosynthetize theresultprovedbyJean-LouisKoszul, ifαo andDαo are thevaluesofαandDα ato, then: αo (q(X))=Tr(f(X)) ∀X∈ g (141) Dαo (q(X),q(Y))= 〈q(X),q(Y)〉o=α0(f(X)q(Y)) ∀X,Y∈ g (142) Jean-LouisKoszulhasalsoproved that the innerproduct 〈., .〉onV, givenby theRiemannian metricgij, satisfies the followingconditions: 〈f(X)q(Y),q(Z)〉+〈q(Y), f(X)q(Z)〉= 〈f(Y)q(X),q(Z)〉+〈q(X), f(Y)q(Z)〉 (143) To make the link with Souriau model of thermodynamics, the first Koszul form α=DlogΦ=Tr(f(X))will play the role of the geometric heat Q and the second koszul form Dα=DdlogΦ= 〈q(X),q(Y)〉owillbe theequivalentofSouriau-Fishermetric that isG-invariant. Koszul theory iswiderand integrates“informationgeometry” in its corpus. Koszul [117–124] hasprovedgeneral results, for example: on a complexhomogeneous space, an invariant volume defineswith thecomplexstructure,an invariantHermitianform. If this space isaboundeddomain, thenthishermitianformispositivedefiniteandcoincideswith theclassicalBergmanmetricof this domain. Duringhis stay at Institute forAdvancedStudy inPrinceton, Koszul [117–124] has also demonstrated thereciprocal foraclassof complexhomogeneousspaces,definedbyopenorbitsof complexaffine transformationgroups.KoszulandVey[137,138]havealsodevelopedextendedresults with the followingtheoremforconnectedhessianmanifolds: Theorem3(Koszul-VeyTheorem).LetMbeaconnectedhessianmanifoldwithhessianmetric g. Suppose thatMadmits a closed1-formα such thatDα= gand there exists agroupGof affineautomorphismsofM preservingα: • If M/G isquasi-compact, thentheuniversal coveringmanifoldofMisaffinely isomorphic toa convexdomainΩofanaffinespacenotcontaininganyfull straight line. • IfM/Giscompact, thenΩ is a sharpconvexcone. Onthisbasis,KoszulhasgivenaLiegroupconstructionof ahomogeneouscone thathasbeendeveloped andapplied in informationgeometrybyShimaandBoyomin the frameworkofHessiangeometry. The results of Koszul arealso fundamental in the frameworkofSouriau thermodynamics. 7. SouriauLieGroupModelandKoszulHessianGeometryAppliedintheContextof InformationGeometryforMultivariateGaussianDensities We will enlighten Souriau model with Koszul hessian geometry applied in information geometry[117–124],recentlystudiedin[3,9,139].Wehavepreviouslyshownthatinformationgeometry couldbefoundedonthenotionofKoszul-VinbergcharacteristicfunctionψΩ(x)= Ω∗ e−〈x,ξ〉dξ, ∀x∈Ω whereΩ is a convex cone andΩ∗ the dual cone with respect to Cartan-Killing inner product 〈x,y〉=−B(x,θ(y)) invariant by automorphisms ofΩ, with B(., .) theKilling formand θ(.) the Cartan involution.WecandeveloptheKoszulcharacteristic function: ψΩ(x+λu)=ψΩ(x)−λ〈x∗,u〉+λ 2 2 〈K(x)u,u〉+ ... (144) withx∗= dΦ(x) dx ,Φ(x)=−logψΩ(x)andK(x)= d 2Φ(x) dx2 (145) 80
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics