Page - 81 - in Differential Geometrical Theory of Statistics
Image of the Page - 81 -
Text of the Page - 81 -
Entropy2016,18, 386
This characteristic function is at the cornerstoneofmodern concept of informationgeometry,
definingKoszuldensitybysolutionofmaximumKoszul-Shannonentropy[140]:
Max
p [
−
Ω∗ pξˆ(ξ)logpξˆ(ξ) ·dξ ]
suchthat
Ω∗ pξˆ(ξ)dξ=1and
Ω∗ ξ ·pξˆ(ξ)dξ= ξˆ (146)
pξˆ(ξ)= e−〈Θ−1(ξˆ),ξ〉
Ω∗ e−〈Θ−1(ξˆ),ξ〉.dξ ξˆ=Θ(β)= ∂Φ(β)∂β whereΦ(β)=−logψΩ(β)
ψΩ(β)=
Ω∗ e−〈β,ξ〉dξ , S(ξˆ)=−
Ω∗ pξˆ(ξ)logpξˆ(ξ) ·dξ andβ=Θ−1(ξˆ)
S(ξˆ)= 〈
ξˆ,β 〉−Φ(β) (147)
This last relation isaLegendre transformbetweenthe logarithmofcharacteristic functionand
theentropy:
logpξˆ(ξ)=−〈ξ,β〉+Φ(β)
S( −
ξ)=−
Ω∗ pξˆ(ξ) · logpξˆ(ξ) ·dξ=−E [
logpξˆ(ξ) ]
S( −
ξ)= 〈E [ξ] ,β〉−Φ(β)= 〈ξˆ,β〉−Φ(β) (148)
The inversionΘ−1(ξˆ) is given by the Legendre transform based on the property that the
Koszul-Shannon entropy is given by the Legendre transform of minus the logarithm of the
characteristic function:
S(ξˆ)= 〈
β, ξˆ 〉−Φ(β)withΦ(β)=−log
Ω∗ e−〈ξ,β〉dξ ∀β∈Ωand∀ξ, ξˆ∈Ω∗ (149)
We can observe the fundamental property that E [S(ξ)] = S(E [ξ]) , ξ ∈ Ω∗, and also as
observedbyMauriceFréchet that“distinguishedfunctions” (densitieswithestimator reaching the
Fréchet-Darmoisbound)aresolutionsoftheAlexisClairautequation introducedbyClairautin1734[141],
as illustrated inFigure8:
S(ξˆ)= 〈
Θ−1(ξˆ), ξˆ 〉
−Φ [
Θ−1(ξˆ) ]
∀ξˆ∈{Θ(β)/β∈Ω} (150)
Figure8.Clairaut-Legendreequation introducedbyMauriceFréchet inhis1943paper [141].
DetailsofFréchetelaborationfor thisClairaut(-Legendre)equationfor“distinguishedfunction”
isgiven inAppendixA,andotherelementsareavailableonFréchet’spapers [141–144].
In this structure, theFishermetric I(x)makesappearnaturallyaKoszulhessiangeometry [145,146],
ifweobserve that
81
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik