Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 81 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 81 - in Differential Geometrical Theory of Statistics

Image of the Page - 81 -

Image of the Page - 81 - in Differential Geometrical Theory of Statistics

Text of the Page - 81 -

Entropy2016,18, 386 This characteristic function is at the cornerstoneofmodern concept of informationgeometry, definingKoszuldensitybysolutionofmaximumKoszul-Shannonentropy[140]: Max p [ − Ω∗ pξˆ(ξ)logpξˆ(ξ) ·dξ ] suchthat Ω∗ pξˆ(ξ)dξ=1and Ω∗ ξ ·pξˆ(ξ)dξ= ξˆ (146) pξˆ(ξ)= e−〈Θ−1(ξˆ),ξ〉 Ω∗ e−〈Θ−1(ξˆ),ξ〉.dξ ξˆ=Θ(β)= ∂Φ(β)∂β whereΦ(β)=−logψΩ(β) ψΩ(β)= Ω∗ e−〈β,ξ〉dξ , S(ξˆ)=− Ω∗ pξˆ(ξ)logpξˆ(ξ) ·dξ andβ=Θ−1(ξˆ) S(ξˆ)= 〈 ξˆ,β 〉−Φ(β) (147) This last relation isaLegendre transformbetweenthe logarithmofcharacteristic functionand theentropy: logpξˆ(ξ)=−〈ξ,β〉+Φ(β) S( − ξ)=− Ω∗ pξˆ(ξ) · logpξˆ(ξ) ·dξ=−E [ logpξˆ(ξ) ] S( − ξ)= 〈E [ξ] ,β〉−Φ(β)= 〈ξˆ,β〉−Φ(β) (148) The inversionΘ−1(ξˆ) is given by the Legendre transform based on the property that the Koszul-Shannon entropy is given by the Legendre transform of minus the logarithm of the characteristic function: S(ξˆ)= 〈 β, ξˆ 〉−Φ(β)withΦ(β)=−log Ω∗ e−〈ξ,β〉dξ ∀β∈Ωand∀ξ, ξˆ∈Ω∗ (149) We can observe the fundamental property that E [S(ξ)] = S(E [ξ]) , ξ ∈ Ω∗, and also as observedbyMauriceFréchet that“distinguishedfunctions” (densitieswithestimator reaching the Fréchet-Darmoisbound)aresolutionsoftheAlexisClairautequation introducedbyClairautin1734[141], as illustrated inFigure8: S(ξˆ)= 〈 Θ−1(ξˆ), ξˆ 〉 −Φ [ Θ−1(ξˆ) ] ∀ξˆ∈{Θ(β)/β∈Ω} (150) Figure8.Clairaut-Legendreequation introducedbyMauriceFréchet inhis1943paper [141]. DetailsofFréchetelaborationfor thisClairaut(-Legendre)equationfor“distinguishedfunction” isgiven inAppendixA,andotherelementsareavailableonFréchet’spapers [141–144]. In this structure, theFishermetric I(x)makesappearnaturallyaKoszulhessiangeometry [145,146], ifweobserve that 81
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics