Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 81 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 81 - in Differential Geometrical Theory of Statistics

Bild der Seite - 81 -

Bild der Seite - 81 - in Differential Geometrical Theory of Statistics

Text der Seite - 81 -

Entropy2016,18, 386 This characteristic function is at the cornerstoneofmodern concept of informationgeometry, definingKoszuldensitybysolutionofmaximumKoszul-Shannonentropy[140]: Max p [ − Ω∗ pξˆ(ξ)logpξˆ(ξ) ·dξ ] suchthat Ω∗ pξˆ(ξ)dξ=1and Ω∗ ξ ·pξˆ(ξ)dξ= ξˆ (146) pξˆ(ξ)= e−〈Θ−1(ξˆ),ξ〉 Ω∗ e−〈Θ−1(ξˆ),ξ〉.dξ ξˆ=Θ(β)= ∂Φ(β)∂β whereΦ(β)=−logψΩ(β) ψΩ(β)= Ω∗ e−〈β,ξ〉dξ , S(ξˆ)=− Ω∗ pξˆ(ξ)logpξˆ(ξ) ·dξ andβ=Θ−1(ξˆ) S(ξˆ)= 〈 ξˆ,β 〉−Φ(β) (147) This last relation isaLegendre transformbetweenthe logarithmofcharacteristic functionand theentropy: logpξˆ(ξ)=−〈ξ,β〉+Φ(β) S( − ξ)=− Ω∗ pξˆ(ξ) · logpξˆ(ξ) ·dξ=−E [ logpξˆ(ξ) ] S( − ξ)= 〈E [ξ] ,β〉−Φ(β)= 〈ξˆ,β〉−Φ(β) (148) The inversionΘ−1(ξˆ) is given by the Legendre transform based on the property that the Koszul-Shannon entropy is given by the Legendre transform of minus the logarithm of the characteristic function: S(ξˆ)= 〈 β, ξˆ 〉−Φ(β)withΦ(β)=−log Ω∗ e−〈ξ,β〉dξ ∀β∈Ωand∀ξ, ξˆ∈Ω∗ (149) We can observe the fundamental property that E [S(ξ)] = S(E [ξ]) , ξ ∈ Ω∗, and also as observedbyMauriceFréchet that“distinguishedfunctions” (densitieswithestimator reaching the Fréchet-Darmoisbound)aresolutionsoftheAlexisClairautequation introducedbyClairautin1734[141], as illustrated inFigure8: S(ξˆ)= 〈 Θ−1(ξˆ), ξˆ 〉 −Φ [ Θ−1(ξˆ) ] ∀ξˆ∈{Θ(β)/β∈Ω} (150) Figure8.Clairaut-Legendreequation introducedbyMauriceFréchet inhis1943paper [141]. DetailsofFréchetelaborationfor thisClairaut(-Legendre)equationfor“distinguishedfunction” isgiven inAppendixA,andotherelementsareavailableonFréchet’spapers [141–144]. In this structure, theFishermetric I(x)makesappearnaturallyaKoszulhessiangeometry [145,146], ifweobserve that 81
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics