Page - 85 - in Differential Geometrical Theory of Statistics
Image of the Page - 85 -
Text of the Page - 85 -
Entropy2016,18, 386
Figure10. Introductionofpotential functionformultivariateGaussian lawinSouriaubook[10].
WecanďŹnallycompute themetric fromthematrixgij:
ds2=â
ij gijdθidθj= dmTRâ1dm+ 1
2 Tr [(
Râ1dR )2]
(168)
andfromclassicalexpressionof theEuler-Lagrangeequation:
n
â
i=1 gik ..
θi+ n
â
i,j=1 Îijk .
θi .
θj=0 , k=1,...,nwithÎijk= 1
2 [
âgjk
âθi + âgjk
âθj + âgij
âθk ]
(169)
That isexplicitelygivenby[170]:{ ..
R+ .
m .
mTâ .RRâ1 .R=0
..
mâ .RRâ1 .m=0 (170)
Wecannot integrate thisEuler-Lagrangeequation.Wewill see thatLiegrouptheorywillprovide
newreducedequation,Euler-PoincarĂŠequation,usingSouriautheorem.
Wemakereference to thebookofDeza thatgivesasurveyaboutdistanceandmetric space [171].
ThecaseofNaturalExponential families thatare invariantbyanafďŹnegrouphasbeenstudiedby
Casalis (in1999paperandinherPh.D. thesis) [172â178]andbyLetac [179â181].Wegive thedetails
ofCasalisâdevelopment inAppendixC.Barndorff-Nielsenhasalsostudiedtransformationmodels
for exponential families [182â186]. In this section,wewill only consider the case ofmultivariate
Gaussiandensities.
8.AfďŹneGroupActionforMultivariateGaussianDensitiesandSouriauâsMomentMap:
ComputationofGeodesicsbyGeodesicShooting
Tomore deeply understandKoszul and SouriauLie groupmodels of information geometry,
wewill illustrate their tools formultivariateGaussiandensities.
Consider thegeneral linear groupGL(n) consistingof the invertiblenĂnmatrices, that is a
topologicalgroupacting linearlyonRnby:
85
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrĂŠdĂŠric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik