Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 85 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 85 - in Differential Geometrical Theory of Statistics

Image of the Page - 85 -

Image of the Page - 85 - in Differential Geometrical Theory of Statistics

Text of the Page - 85 -

Entropy2016,18, 386 Figure10. Introductionofpotential functionformultivariateGaussian lawinSouriaubook[10]. Wecanfinallycompute themetric fromthematrixgij: ds2=∑ ij gijdθidθj= dmTR−1dm+ 1 2 Tr [( R−1dR )2] (168) andfromclassicalexpressionof theEuler-Lagrangeequation: n ∑ i=1 gik .. θi+ n ∑ i,j=1 Γijk . θi . θj=0 , k=1,...,nwithΓijk= 1 2 [ ∂gjk ∂θi + ∂gjk ∂θj + ∂gij ∂θk ] (169) That isexplicitelygivenby[170]:{ .. R+ . m . mT− .RR−1 .R=0 .. m− .RR−1 .m=0 (170) Wecannot integrate thisEuler-Lagrangeequation.Wewill see thatLiegrouptheorywillprovide newreducedequation,Euler-Poincaréequation,usingSouriautheorem. Wemakereference to thebookofDeza thatgivesasurveyaboutdistanceandmetric space [171]. ThecaseofNaturalExponential families thatare invariantbyanaffinegrouphasbeenstudiedby Casalis (in1999paperandinherPh.D. thesis) [172–178]andbyLetac [179–181].Wegive thedetails ofCasalis’development inAppendixC.Barndorff-Nielsenhasalsostudiedtransformationmodels for exponential families [182–186]. In this section,wewill only consider the case ofmultivariate Gaussiandensities. 8.AffineGroupActionforMultivariateGaussianDensitiesandSouriau’sMomentMap: ComputationofGeodesicsbyGeodesicShooting Tomore deeply understandKoszul and SouriauLie groupmodels of information geometry, wewill illustrate their tools formultivariateGaussiandensities. Consider thegeneral linear groupGL(n) consistingof the invertiblen×nmatrices, that is a topologicalgroupacting linearlyonRnby: 85
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics