Seite - 85 - in Differential Geometrical Theory of Statistics
Bild der Seite - 85 -
Text der Seite - 85 -
Entropy2016,18, 386
Figure10. Introductionofpotential functionformultivariateGaussian lawinSouriaubook[10].
Wecanfinallycompute themetric fromthematrixgij:
ds2=∑
ij gijdθidθj= dmTR−1dm+ 1
2 Tr [(
R−1dR )2]
(168)
andfromclassicalexpressionof theEuler-Lagrangeequation:
n
∑
i=1 gik ..
θi+ n
∑
i,j=1 Γijk .
θi .
θj=0 , k=1,...,nwithΓijk= 1
2 [
∂gjk
∂θi + ∂gjk
∂θj + ∂gij
∂θk ]
(169)
That isexplicitelygivenby[170]:{ ..
R+ .
m .
mT− .RR−1 .R=0
..
m− .RR−1 .m=0 (170)
Wecannot integrate thisEuler-Lagrangeequation.Wewill see thatLiegrouptheorywillprovide
newreducedequation,Euler-Poincaréequation,usingSouriautheorem.
Wemakereference to thebookofDeza thatgivesasurveyaboutdistanceandmetric space [171].
ThecaseofNaturalExponential families thatare invariantbyanaffinegrouphasbeenstudiedby
Casalis (in1999paperandinherPh.D. thesis) [172–178]andbyLetac [179–181].Wegive thedetails
ofCasalis’development inAppendixC.Barndorff-Nielsenhasalsostudiedtransformationmodels
for exponential families [182–186]. In this section,wewill only consider the case ofmultivariate
Gaussiandensities.
8.AffineGroupActionforMultivariateGaussianDensitiesandSouriau’sMomentMap:
ComputationofGeodesicsbyGeodesicShooting
Tomore deeply understandKoszul and SouriauLie groupmodels of information geometry,
wewill illustrate their tools formultivariateGaussiandensities.
Consider thegeneral linear groupGL(n) consistingof the invertiblen×nmatrices, that is a
topologicalgroupacting linearlyonRnby:
85
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik